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Abstract 

Background: Anoikis, a mechanism of programmed apoptosis, plays an important role in growth and 
metastasis of tumors. However, there are still few available comprehensive reports on the impact of 
anoikis on colorectal cancer.  
Method: A clustering analysis was done on 133 anoikis-related genes in GSE39582, and we compared 
clinical features between clusters, the tumor microenvironment was analyzed with algorithms such as 
“Cibersort” and “ssGSEA”. We investigated risk scores of clinical feature groups and anoikis-associated 
gene mutations after creating a predictive model. We incorporated clinical traits to build a nomogram. 
Additionally, the quantitative real-time PCR was employed to investigate the mRNA expression of 
selected anoikis-associated genes. 
Result: We identified two anoikis-related clusters with distinct prognoses, clinical characteristics, and 
biological functions. One of the clusters was associated with anoikis resistance, which activated multiple 
pathways encouraging tumor metastasis. In our prognostic model, oxaliplatin may be a sensitive drug for 
low-risk patients. The nomogram showed good ability to predict survival time. And SIRT3, PIK3CA, 
ITGA3, DAPK1, and CASP3 increased in CRC group through the PCR assay. 
Conclusion: Our study identified two distinct modes of anoikis in colorectal cancer, with active 
metastasis-promoting pathways inducing an anti-anoikis subtype, which has a stronger propensity for 
metastasis and a worse prognosis than an anoikis-activated subtype. Massive immune cell infiltration may 
be an indicator of anoikis resistance. Anoikis' role in the colorectal cancer remains to be investigated. 
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Introduction 
Colorectal cancer (CRC) accounts for 10% of all 

malignancies and cancer-related deaths globally[1]. 
According to data, the number of newly diagnosed 

CRC cases exceeded 1.9 million in 2020 [2, 3]. 20% of 
CRC patients develop metastatic disease, and 40% 
return following local treatment. Metastatic CRC has a 
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less-than-20% 5-year survival rate [4]. However, with 
our improving insights into the diversity and 
complexity of the tumor microenvironment (TME), 
immunotherapy has achieved substantial and 
long-lasting results in the treatment of CRC[5]. 
Although research on CRC continues to advance, the 
incidence of CRC is still reported to be on the rise[6]. 
Previous studies have also predicted that deaths from 
CRC will increase substantially by 2035[7]. Therefore, 
the exploration of new biomarkers has important 
clinical implications for clarifying the prognosis and 
most appropriate treatment of CRC. 

Anoikis is a specific programmed apoptosis 
initiated by the detachment of cells from the 
extracellular matrix (ECM), which is critical in 
organism development, disease development and 
tumor metastasis[8]. Several previous studies have 
elucidated the various mechanisms employed by 
cancer cells to eliminate anoikis and promote 
metastasis and invasion, including reactive oxygen 
species (ROS) [9], non-coding RNAs[10] and signaling 
pathways[11].  

The resistance of aggressive tumor cells to 
anoikis represents a pivotal aspect of tumor 
progression and a potential target for therapeutic 
intervention. For example, Ye et al. found that 
CTNNB1 transcription, which was induced by 
nuclear MYH9, facilitated anoikis resistance and 
metastasis in gastric cancer cells[12]. Furthermore, the 
HBXIP/Nrf2 feedback loop promotes breast cancer 
anoikis resistance by maintaining redox homeostasis 
and inhibiting JNK1 activation[13]. Furthermore, 
Syndecan-2 overexpression in melanoma cells 
activates PI3K/Akt and ERK signaling, underscoring 
the ECM's role in anchorage independence and cancer 
cell invasion[14]. Additionally, in cholangiocarci-
noma, metformin-induced AMPK activation sensi-
tizes cells to anoikis, warranting further investigation 
into AMPK's role in anoikis resistance and 
metastasis[15].  

There has also been increasing interest in CRC, 
where several genes involved in fatty acid oxidation, 
particularly the rate-limiting enzyme CPT1A, are 
upregulated in suspension-grown CRC cells. CPT1A 
in CRC cells is able to mediate the scavenging of ROS 
clusters, a mechanism that is important for imbuing 
cellular resistance to anoikis[16]. It is suggested that 
CPT1A is a new potential target for the treatment of 
metastatic CRC. Integrins exert their influence on 
cellular resistance to anoikis through interactions with 
various molecules, particularly EGFR and oncogenes, 
as well as synergistic actions with growth factors[17]. 
By regulating multiple signaling pathways, including 
ERK/Akt, MAPK, and AKT, integrins facilitate cell 
survival in an environment detached from the 

extracellular matrix[18]. This occurs through the 
coordination of integrin interactions with diverse 
molecular partners, highlighting their pivotal role in 
maintaining cell viability when detached from the 
substrate[19]. And in recent years, it has also been 
found that increased co-binding of EGFR with 
integrin-α2β1/-α5β1 on the surface of anoikis- 
resistant cells regulates anoikis resistance in CRC 
cells[20]. Furthermore, ATP enzyme inhibitor 1 (IF1), 
a physiological inhibitor of ATP synthase, is 
overexpressed in a significant proportion of 
malignancies that contribute to metabolic alternations 
and tumor development, and the overexpression of 
mitochondrial IF1 prevents metastatic disease in CRC 
through promoting anoikis and neoplasm infiltration 
in NK cells[21]. A study revealed that KLF5 is a novel 
prognostic biomarker for CRC and may play a role in 
maintaining anoikis resistance in CRC cells[22]. 

 Several anoikis-related genes have been linked 
to CRC metastasis and prognosis in previous reports, 
but the anoikis signature has not been 
comprehensively studied. This study evaluated CRC 
transcriptome data to clarify the role of anoikis in 
CRC, indicating that its mechanism of action may 
influence prognosis. Our findings may help us 
understand CRC and its therapy by complementing 
the role of anoikis. 

Methods 
Download and processing of Data 

The study data were partly obtained in public 
GEO databases. We first retrieved the search term 
"colorectal cancer" in the GEO databases. Finally, we 
download GSE39582, GSE72970, and GSE38832 by the 
R package “GEOmirror” ('http://raw 
.githubusercontent.com/jmzeng1314/GEOmirror/m
aster'). We opted to analyze each dataset separately to 
avoid biological differences from merging.  

The data cleaning process for the microarray 
data was as follows: 1) samples with missing survival 
time or survival status were excluded; 2) survival time 
was restricted to <30 days; 3) if the dataset was not 
log2 processed, log2+1 normalization was performed 
to avoid negative expression values; 4) intra-group 
correction was conducted using the 
removeBatchEffect function of the limma package[23]. 
The final GSE39582 dataset had 575 cases: 556 tumors 
and 19 normals. GSE38832 included 119 samples and 
GSE72970 124. 

We used “tcgabiolinks (version) 2.24.3”[24] to 
download the TCGA-COAD STAR-Counts and 
extract TPM values for subsequent analyses. For the 
TCGA-COAD dataset, we excluded patients with 
missing data on the survival time or with a survival 
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time <30 days. Ultimately, 424 patients were included. 
The “cBioPortalData” [25] package was used to 
download the TCGA-COAD MSI information. 

Considering the advantage of the GSE39582 
sample size in the included dataset and the rich 
clinical information (including gender, age, TNM 
stage, CpG Island Methylator Phenotype (CIMP), 
chromosome instability (CIN),and mismatch repair 
(MMR)), we used it as the primary analysis dataset, 
while the TCGA was used to supplement the analysis 
of the MSI status as well as anoikis gene mutations, 
and the other two datasets from GEO were mainly 
used for external validation of the model. 

Identification of anoikis-related clusters 
We collected 133 anoikis-related genes from 

Harmonizome (https://maayanlab.cloud/ 
Harmonizome/) for anoikis (Supplementary Table 1) 
and extracted the expression of 133 genes in 556 CRC 
patients in the GSE39582 dataset using 
“ConsensusClusterPlus”[26]with the following 
parameters: clusterAlg= “pam”, distance= 
“spearman”, repeated 1000 times to ensure the relia-
bility of clustering. We used a principal component 
analysis (PCA) for a dimensionality reduction 
analysis. We also analyzed the differences in survival 
time between the clusters and the correlation with 
chemotherapy by a Kaplan-Meier analysis. In 
addition, we compared TNM stage, tumor location, 
CIMP, CIN, and MMR between the groups, and the 
chi-square test was used to determine whether there 
were any significant differences between the clusters. 
The outcomes were presented using stacked bar 
graphs. 

Differential genes and functional enrichment 
analyses 

We subsequently identified differentially 
expressed genes between clusters A and B using the 
limma package, selecting |logFC|> 1 and adjutsted 
p-value <0.05 as the threshold. Genes that met the 
threshold condition were considered as anoikis 
subtype differential genes. After obtaining the 
differential gene set, we performed Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses using “clusterProfiler”, 
and the p-valueCutoff & qvalueCutoff were both set 
at 0.05. 

Given that the contribution of non-differentially 
expressed genes to biological pathways cannot be 
denied, we performed a single-sample geneset 
enrichment analysis (ssGSEA)[27] on 556 patients, 
and the dataset was selected as KEGG (c2.cp.kegg. 
v7.5.1.symbols.gmt) and hallmark (h.all.v7.5.1. 
symbols.gmt) (msigdb, gsea-msigdb.org/gsea/ 

msigdb/). For the scoring results, the data were 
normalized by the Min-Max method, and the 
differential expression pathways were calculated by 
the limma package.The inter-cluster differences were 
displayed via heat map with an adjusted p-value 0.05. 

Immune infiltration analyses 
To explore the differences in immune 

microenvironment between subtypes, we first 
assessed the immune, stromal and tumor purity via 
the “ESTIMATE”[28]. To specifically characterize 
immune cell infiltration, we used “CIBERSORT”[29] 
to assess the differences in infiltration of 22 immune 
cells, with perm set to 1000. The ssGSEA was further 
applied to assess the abundance of “MDSC”, 
“macrophages” and “regulatory T cells”. 

Constructing and validating a prognostic 
model and evaluating prognostic performance 

We took GSE39582 as the training dataset. Then 
univariate cox regression was first performed on 133 
genes. Genes with statistical significance were 
included. Subsequently, we employed Lasso- 
penalized Cox regression and multifactorial Cox 
regression method to filter for prognostic genes and 
compute regression coefficients. Then we computed 
risk scores according to the expression of each gene 
using the following formula: 

Risk score = [(Exp gene1 × coefficient gene1) + (Exp 
gene2 × coefficient gene2) +--+ (Exp geneN × 

coefficient geneN)]. 

We applied the “survminer” package to classify 
patients into high- and low-risk groups. Kaplan-Meier 
curves were used to compare survival between 
groups. Then time-dependent receiver operating 
characteristic curve(time-ROC) was utilized in the 
assessment of the predictive performance. Moreover, 
we conducted external validation of the risk score 
model on the data sates, GSE72970, GSE38832 and 
TCGA. To better portray the prognostic model, we 
analyzed the risk score in different clinical feature 
groups. 

We used the “tools” package to depict the 
difference in the frequency of anoikis-associated 
mutations in the different risk groups, and the 2×2 
chi-square test was used to calculate statistical 
significance. The "tmb" function of the "maftools"[30] 
package was used to assess the tumor mutation 
burden (TMB), with box plots used to present the 
variation of TMB between risk groups. The 
"oncoPredict"[31] package, a tool for drug sensitivity 
prediction, was used to evaluate the sensitivity of 196 
drugs across patient risk groups. It employs the 
'calcPhenoty' function with training from two 
datasets, CTRP-V2 and GDSC-V2, to predict drug 
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sensitivity based on patient data. This approach 
ensures a robust model capturing genomic features 
and drug responses for comprehensive analysis. 

We combined the prognostic model with clinical 
traits after Lasso regression analysis. We then 
screened the prognostic factors according to the 
“lambda.min” value by stepwise regression and 
judged the prognostic factors according to the 
minimum Akaike information criterion (AIC) value. 
The final results from the aforementioned research 
were utilized to generate nomogram predicting the 
OS of CRC patients. The model's stability was tested 
using time-ROC and the calibration curve. 

Quantitative Real-Time PCR 
In this study, we collected 78 colon samples (39 

cancer tissue samples and 39 corresponding normal 
tissue samples) obtained from surgical procedures or 
endoscopic examinations conducted at Taizhou 
Hospital in Zhejiang Province, China, between 2016 
and 2021. Cellular RNA was extracted using Trizol 
reagent (Thermo Fisher Scientific). Subsequently, 
following the manufacturer's recommendations, 
reverse transcription into cDNA was carried out using 
the Prime ScriptTM RT kit (Takara Biotechnology Co., 
Dalian, China). The cycle threshold (CT) values for 
each group were determined, and the expression 
levels of six anoikis-related genes (SIRT3, PIK3CA, 
ITGA3, DAPK1,PAK1 and CASP3,) were calculated 
using the 2-ΔΔCT method with three independent 
replicates. Primer sequences are available in the 
Supplementary Table 2. All samples obtained from 
real-world sources were acquired with the approval 
of the the institutional review committee of Taizhou 
Hospital of Zhejiang Province Affiliated to Wenzhou 
Medical University, and strict adherence to relevant 
regulations and ethical guidelines was observed. 

Statistical analysis 
Statistical analyses and data visualization were 

performed using GraphPad Prism version 5.0 (La 
Jolla, CA, USA) and R 4.1.2 (R Core Team, 
Massachusetts, USA). Prognostic differences among 
sample groups were assessed using the logrank test. 
To evaluate the significance of results, we conducted a 
Kruskal-Wallis test for three groups and employed 
the Wilcoxon test for pairwise comparisons between 
two groups. In all analyses, p-values less than 0.05 
were considered statistically significant. 

Results 
The workflow of our study 

We collected GSE39582 data and performed a 

cluster analysis based on 133 anoikis-related genes to 
obtain 2 clusters, based on which we performed 
differential gene, functional enrichment and TME 
analyses (Fig. 1A). To identify prognosis-related genes, 
we used Cox regression and Lasso-penalized Cox 
methods, ultimately identifying six genes. According 
to the expression of these six genes, patients were 
categorized as high- or low-risk. Then we explored 
the anoikis-related gene mutations in the subgroups 
and assessed the risk score of several clinical traits. A 
clinical prognostic model was developed, a prognostic 
nomogram was produced and validated, and the 
calibration curve was examined. Furthermore, we 
collected colon cancer samples and utilized RT-PCR to 
validate the expression of the 6 model genes (Fig. 1B). 

Identification of anoikis-related clusters 

We clustered GSE39582 using "ConsensusCluste
rPlus", according to 133 anoikis-related genes, 
obtaining 2 clusters (clusters A and B; k=2); cluster A 
contains 196 patients, while cluster B contains 360 
patients. (Fig. 2A). We then used a PCA to downscale 
the both clusters, thus clearly distinguishing the 
clusters (Fig. 2B). As presented in Fig. 2C the survival 
analysis showed cluster B outperformed cluster A, 
suggesting that different anoikis subtypes may have 
different modes of action in CRC. Survival of CRC 
patients is closely related to treatment and tumor 
stage. We then evaluated whether or not 
chemotherapy affects the survival in different 
subgroups. We performed separate survival analyses 
for chemotherapy-treated and non-chemotherapy- 
treated patients in clusters A and B. As shown in Fig. 
2D, the survival of chemotherapy-treated patients in 
cluster B was significantly better than that of 
chemotherapy-treated patients in cluster A. However, 
in the subgroup analysis without chemotherapy, we 
did not see a significant difference (Supplementary 
Fig. 2A). We then performed a separate 
chemotherapy-treated and non-chemotherapy-treated 
subgroup analysis within the two clusters, with no 
survival differences noted within either cluster 
(Supplementary Fig. 2B, C). These findings suggest 
that may be some difference between clusters A and B 
that allow patients to benefit from chemotherapy. 

We then compared the two clusters' clinical 
stages. Stages I and II accounted for a larger 
proportion of cluster B than cluster A, while stages III 
and IV accounted for a smaller proportion (Fig. 2E). 
Furthermore, other clinically relevant indicators, such 
as the MMR state, tumor location, CIMP status and 
CIN status, were not statistically different (Fig. 2F, 
Supplementary Fig. 2D-F). 
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Figure 1. Diagrammatic representation of the flow of the study. (A) Identification of anoikis-related clusters and a tumor microenvironment analysis. (B) Construction 
and validation of a gene prognostic model. 

 

Identification of differential genes and a 
functional enrichment analysis in 
anoikis-related clusters 

The anoikis-related clusters showed significant 
clinically specific differences, suggesting that there 
may be differences in biological pathways between 
the two clusters. The volcano chart in Fig. 3A shows 
that 2 genes were upregulated, and 380 were 
downregulated. We noticed that FNDC1, THBS2 and 
SFRP4 had a low expression in cluster B, while the 
OLMF4 expression was elevated, all of which were 
involved in tumorigenesis and progression in 

previous reports (Fig. 3A). This may indicate the 
dysregulation of oncogene expression between 
clusters.  

To further investigate the possible biological 
function of anoikis, we did a functional enrichment 
analysis. In the GO analysis, we found that 
“regulation of cell substrate adhesion”, “cell matrix 
adhesion”, “cell-containing extracellular matrix”, and 
“extracellular matrix binding” were enriched (Fig. 
3B). A KEGG analysis showed that differential genes 
were mapped to “focal adhesion”, “ECM-receptor 
interaction”, and “PI3K-AKT signaling”, which are 
associated with tumor metastasis (Fig. 3C).  
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Figure 2. Identification of anoikis-related clusters and the analysis of their clinical relevance. (A) A cluster analysis of the GSE39582 dataset. (B) A PCA of 
anoikis-related clusters. (C) Survival curves. Blue (cluster A); red (cluster B). (D) Survival curves in chemotherapy-treated patients. Blue(cluster A); red(cluster B) (E) Proportion 
of each stage in clusters A and B. Grey represents stage I, yellow stage II, orange stage III and red stage IV.(F)Proportion of MMR status in clusters A and B.  

 

And we used ssGSEA approach to evaluate the 
differences in pathways between two clusters. Our 
findings showed that, in cluster A, “ECM-Receptor 
interaction”, “focal adhesion”, “NOTCH signaling 
pathway”, “WNT signaling pathway”, “MAPK 
signaling pathway”, and “TGF-β signaling pathway” 
were upregulated, while DDR-related pathways in 
cluster B were enriched, including “base excision 

repair”, “MISMATCH repair”, and “DNA replica-
tion” (Fig. 3D).  

Additionally, we compared the hallmarks 
between the two clusters. The expression of hall-
marks, such as NOTCH signaling, TGF-β signaling, 
WNT β-catenin signaling and angiogenesis, was 
up-regulated in cluster A (Supplementary Fig. 3A). 
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Figure 3. Differential gene and functional enrichment analyses of anoikis-related clusters. (A) Volcano map showing differential genes between clusters A and B. (B) 
A GO analysis of differential genes. (C) A KEGG analysis of differential genes. (D) Differential pathways. Yellow represents the upregulated pathways, and black represents the 
downregulated pathways.  

 

The TME analysis 
The TME has received increasing academic 

attention in CRC in recent years. Therefore, we also 
analyzed the differences in the TME between clusters 
A and B. We first evaluated the stromal and immune 
scores using “ESTIMATE” and found that the scores 
of cluster A were higher than those of cluster B (Fig. 
4A, B). However, as for tumor purity, cluster A scored 
less than cluster B (Supplementary Fig. 3B). The 
results indicate immunological heterogeneity between 
clusters. We further assessed the immune cell 
differences via the CIBERSORT method and found 
that M2 macrophages, myeloid-derived suppressor 
cells (MDSCs) and regulatory T cells were higher in 
cluster A than cluster B (Fig. 4C). We then assessed 
the infiltration of macrophages and regulatory T cells 

using ssGSEA, and indeed, we found the elevated 
expression of these immune cells in cluster A 
compared with cluster B (Supplementary Fig. 3E). 

Construction of a risk model 
The above findings suggest that anoikis has a 

different mechanism in CRC. We then used univariate 
Cox regression to analyze anoikis-related genes and 
obtained 31 genes associated with the survival 
(Supplementary Fig. 3C). We performed a 
Lasso-penalized Cox regression analysis to further 
screen the six genes with a hazard ratio (HR) >1 
(SIRT3, PIK3CA, ITGA3 and DAPK1, which we 
considered potential risk genes) and an HR <1 (PAK1 
and CASP3, which we considered potential protective 
genes) (Fig. 5A). The risk score was then calculated 
with the formula: 
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Risk score= [(Exp SIRT3 × (1.171) + (Exp PIK3CA × 
(0.465) + Exp ITGA3 × (0.421) + Exp DAPK1 × (0.196) 

+ Exp PAK1 × (-0.575) + Exp CASP3 × (-0. 33)]  

Based on the best cut-off values, patients in the 
GSE39582 were classified into high- and low-risk 
categories, and we saw that the cut-off values 
differentiated surviving and dying patients (Fig. 5B, 
C). The Kaplan-Meier curves demonstrated that the 
low-risk group had a superior OS compared to the 
high-risk group (Fig. 5D). We next evaluated the 
expression of six genes in the two groups. It could be 
noticed that potential risk genes expressed more 
strongly in the high-risk group, while potential 
protective genes expressed more strongly in the 

low-risk group, further confirming the reliability of 
the screened genes (Fig. 5E).  

Time-ROC curves indicated that the gene 
prognostic model demonstrated strong predictive 
ability, with areas under the curve (AUCs) of 0.72, 
0.69, 0.67 and 0.67 predicting the OS at 1, 3, 5 and 7 
years, respectively (Fig. 5F). We assessed the risk 
score as above in three external validation datasets 
(GSE38832, GSE72970 and TCGA). The results 
showed that the high-risk group had a much poorer 
prognosis than the low-risk group (Fig. 5G, H, 
Supplementary Fig. 3D), suggesting the stability of 
our constructed model. 

 

 
Figure 4. Differences in the tumor microenvironment of anoikis-related clusters. Blue represents cluster A, and red represents cluster B. (A) Immune score in 
anoikis-related clusters. (B) Stromal score in anoikis-related clusters. (C) The infiltration of 22 immune cell types Ns means “not statistically significant”; *p < 0.05; **p < 0.01; ***p 
< 0.001; ****p < 0.0001 (all significance designations that appear in this paper are minor criteria). 
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Figure 5. The construction and evaluation of a prognostic model of six anoikis-related genes. (A) Forest plot of the six genes (B) Risk scores of patients in 
GSE39582. Blue (high-risk); red (low-risk) (C) The survival status in the GSE39582. Red represents “dead”, and blue “alive”. (D) Survival differences in the high-risk and low-risk 
patients of GSE39582. (E)Expression of the six anoikis-related genes in high- and low-risk groups. Blue (high-risk); red (low-risk). (F) A time-ROC curve analysis of the risk model 
in GSE39582. (G-H) The Kaplan-Meier survival analysis of the external validation datasets. Blue ( high-risk); red (low-risk) G: TCGA-COAD; H: GSE38832 
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The correlation between risk score and clinical 
traits  

After comparing the risk score scoring between 
patients in the clusters A and B, we found a higher 
risk score in cluster A with a poor prognosis, which is 
consistent with our finding that cluster A has a worse 
survival than cluster B and further indicating the 
reliability of our score (Fig. 6A).  

We also contrasted the risk scores between 
patients with different stages. We found that patients 
in stage IV had the highest risk score, while those in 
stage I had the lowest (Fig. 6B). No statistically 
significant differences were observed in the compa-
rison of risk scores among clinical characteristics, such 
as gender, age, CIMP status, CIN status, MMR status 
and tumor location (Supplementary Fig. 4A-F). Gene 
mutations attracts wide attention in the diagnosis and 
treatment of CRC. We therefore also evaluated the 
mutation status of these 133 anoikis-associated genes 
in the high- and low-risk groups. The results are 
shown in Fig. 6C, where we focused on the increased 
and statistically significant mutations among the 
KDR, ITGAV, IGF1R and ITGA6 genes, suspecting 
that the differences in the high- and low-risk groups 
might have been affected by gene mutation. 
Furthermore, we evaluated the risk of BRAF, TP53 
and KRAS mutations separately and found that the 
risk score in BRAF mutation patients was higher than 
that in non-mutation patients (Fig. 6D), while there 
was no statistically significant difference in the scores 
among patients with and without TP53 and KRAS 
mutations (Supplementary Fig. 4G, H).  

We further analyzed the proportion of BRAF 
mutation in the high- and low-risk groups, and found 
more patients with a BRAF mutation in the high-risk 
group than in the low-risk group (Fig. 6E). We 
therefore thought that BRAF mutations might be 
associated with a poor prognosis. We next verified in 
the TCGA that there was no statistically difference; 
however, patients in the BRAF mutation group 
showed a trend toward a higher risk than those in the 
non-mutation group (Supplementary Fig. 4I). 

In addition, we also assessed the drug sensitivity 
profile of the high- and low-risk groups. We found 
that most drugs' IC50 values were increased in the 
high-risk group, suggesting that there might be more 
chemotherapy-insensitive patients in the high-risk 
group (Supplementary Fig. 5A). We then focused 
specifically on several classes of drugs that are 
commonly applied in CRC and found that low-risk 
patients demonstrated superior drug sensitivity to 
oxaliplatin than high-risk patients, suggesting they 
may be a beneficial population for oxaliplatin. (Fig. 
7A). 

Construction and validation of a predictive 
nomogram 

We included clinical traits that are commonly 
considered prognostically relevant in clinical practice 
and are easily obtainable. The nomogram 
construction involved integrating the anoikis model 
risk group, as well as demographic factors such as 
age, gender, and TNM stage, determined through the 
lasso-combined stepwise approach (Fig. 7B). The 
Time-ROC analysis indicated AUCs of 0.86, 0.8, 0.77, 
and 0.78 for predicting OS at 1, 3, 5, and 7 years, 
respectively (Fig. 7C). Additionally, calibration curves 
demonstrated a general agreement between predicted 
and observed OS (Fig. 7D). 

Validation of the expression of 6 model genes 
in the real world 

To confirm the successful induction of the 6 
model genes (SIRT3, PIK3CA, ITGA3, DAPK1, PAK1, 
and CASP3), we gathered a set of 39 colon cancer 
tissue samples. The RT-PCR assay results clearly 
demonstrated a significant increase in mRNA 
expression, for SIRT3, PIK3CA, ITGA3, DAPK1, and 
CASP3, within the CRC group (Fig. 8A-F).This 
heightened expression indicted the reliability of the 
gene selection. 

Discussion 
Anoikis is a specific type of cell death that has 

received much attention in recent years[32]. Several 
studies have elucidated the various mechanisms 
employed by cancer cells to eliminate anoikis and 
promote their metastasis and invasion. Therapeutic 
approaches targeting anoikis have been initiated in 
some cancers[33]. In studies on CRC, genes such as 
CPT1A, IF1 and KLF5 have been found to be involved 
in anoikis resistance[16, 21, 22]. However, an anoikis 
signature in CRC has not been systematically 
identified. Therefore, our study explored the role of 
anoikis in the development and metastasis of CRC 
through bioinformatics. 

In the study, the prognosis of cluster A was 
worse than that of cluster B, including in patients who 
also received chemotherapy. This suggests that there 
is heterogeneity in the role of anoikis in CRC patients, 
which may benefit patients receiving chemotherapy. 
Anoikis resistance is an important feature of tumor 
metastasis. We noticed a significant increase in the 
proportion of stage III or IV patients in cluster A 
compared with cluster B. This suggests that there may 
be resistance to anoikis in cluster A, which could 
make cluster A patients more likely to develop lymph 
node or distant metastases. Cluster B, conversely, 
showed the opposite possibility. This distinction 
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indicates that anoikis has distinct modes of action in 
CRC. We considered cluster A to be an anoikis- 

resistant cluster and cluster B an anoikis-activated 
cluster. 

 
 

 
Figure 6. The analysis of the clinical characteristics and gene mutations in the prognostic model. (A) Differences in risk scores between clusters A and B. Blue 
(cluster A); red (cluster B). (B) Risk scores of patients in each stage. Blue represents stage 0/I, red stage II, green stage III and purple stage IV. (C) A waterfall diagram showing 
mutations in anoikis-related genes in the two groups. (D) Risk scores between BRAF-wild and BRAF-mutant groups. (E) Proportions of BRAF-wild and BRAF-mutation patients 
in the high- and low-risk groups.  
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Figure 7. A drug sensitivity analysis and nomogram construction. Drug sensitivity differences between the high- and low-risk groups. Blue (high-risk); red (low-risk). (B) 
Nomogram for predicting the survival of CRC patients. (C) A time-dependent ROC of the nomogram. (D) Calibration curve of the nomogram.  
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Figure 8. The mRNA expression of 6 anoikis-related genes. (A) PIK3CA; (B) SIRT3; (C) DAPK1; (D) PAK1; (E) ITGA3; (F) CASP3.  

 
To explore this difference, we did a differential 

gene analysis of the two clusters. Intriguingly, some 
genes related to tumor development and progression 
showed a decreased expression in cluster B and 
increased expression in cluster A. In previous reports, 
FNDC1 and SFRP4 were closely linked to the 
development of epithelial-mesenchymal transition 
(EMT), which represents the ability to acquire 
migration[34, 35]. Further, knockdown of FNDC1 was 
found to inhibit proliferation, invasion and migration 
of gastric cancer cells, and by modulating the 
Wnt/β-catenin signaling pathway, FNDC1 may 

facilitate the EMT of gastric cancer cells[34]. Not 
coincidentally, SFRP4 expression was also found to be 
proportional to tumor invasion in gastric cancer, but 
the exact mechanism has not been elucidated[35]. In 
addition, Bin et al. found by bioinformatics methods 
that a high THBS2 expression was associated with a 
shortened survival, and this alteration was associated 
with the PI3K-AKT pathway and ECM. The authors 
thus considered it a potential biomarker of CRC[36]. 
Jie et al. further found that the knockdown of OLFM4 
was able to promote metastasis of gastric cancer cells 
by activating the NF-κB/IL-8 axis[37]. Such an altered 
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gene expression may promote the activation of 
anoikis in cluster B and prevent tumor metastasis. 

We also noticed differences in functional 
enrichment. We are concerned that many 
ECM-related pathways are enriched. The normal cell 
survival is signaled by cell adhesion to ECM 
components as well as soluble growth factors and 
cytokines, while inappropriate ECM attachment or 
loss of cellular machinery anchoring is a key 
mechanism causing anoikis[38]. Failure to execute the 
anoikis program may lead to adnexal cells at the site 
of initial contact between matrix proteins and cell 
proliferation at ectopic sites where the stromal 
proteins are different from the stromal proteins[39]. 
This deregulation is an important hallmark of 
metastatic cancer cells. Our findings suggest that this 
resistance may emerge in CRC as a noteworthy 
research direction.  

In cluster A, we discovered the increased 
expression of a number of pathways that have been 
reported in cancer metastasis studies. Jackstadt et al. 
found that the NOTCH signaling pathway promotes 
tumor metastasis by creating a microenvironment that 
attracts neutrophils[40]. The relationship between 
NOTCH signaling and anoikis has been reported in 
cervical tumors and prostate cancer. In cervical 
tumors, the activation of NOTCH signaling has been 
found to promote tumor metastasis by activating the 
PKB/Akt pathway and generating resistance to 
anoikis[41]. In prostate cancer, increased NOTCH 
signaling can inhibit anoikis in prostate epithelial cells 
by enhancing NF-κB activity[42].  

Moreover, the MAPK signaling pathway has 
been implicated in CRC metastasis[43]. This pathway 
is crucial for the regulation of cell-cell and cell-matrix 
contacts, and its disruption in the initiation of the 
anoikis program results in the death of non-normal 
cells, such as cancer cells[8]. The TGF-β pathway is an 
important pathway in the development of metastasis 
in CRC and has been reported to be linked to the loss 
of SMAD4, a transcription factor in TGF-β 
superfamily signaling that promotes tumor 
growth[44]. In previous reports, its association with 
anoikis resistance has also been suggested. Zou et al. 
reported that INHBB, a TGF family protein inhibits 
anoikis resistance and metastasis in nasopharyngeal 
carcinoma cells through attenuating the action of the 
TGF-β pathway[45]. In some CRC cases, TGF-β 
signaling, by increasing anoikis resistance, may 
enhance the ability of CRC cells to invade and 
colonize a second site[46].  

In the study, the expression of the TGF-β, MAPK 
and NOTCH signaling pathways was significantly 
increased in cluster A, further suggesting the presence 
of anoikis resistance in cluster A patients. These 

pathways were indeed reported to be associated with 
CRC metastasis in previous studies. Whether or not 
these pathways mediate anoikis resistance in CRC 
needs to be further investigated.  

Changes in the TME are closely related to tumor 
metastasis[47]. In our immune analysis, anoikis 
resistance may be associated with immune activation. 
We also focused on the increased infiltration of 
MDSCs, macrophages and regulatory T cells in cluster 
A. In a previous report, macrophages in neoplasms 
were shown to drive angiogenesis and promote tumor 
cell migration and invasion [48]. In hepatocellular 
carcinoma (HCC), M2 macrophages promote HCC 
cell migration and EMT via the TLR4/STAT3 
signaling pathway[49]. In breast cancer, macrophage 
abundance positively correlates with EMT 
marker[50]. Such a relationship has also been reported 
in CRC. Tumor-associated macrophages (TAMs) can 
induce EMT by regulating the JAK2/STAT3/ 
miR-506-3p/FoxQ1 axis to enhance CRC migration 
and invasion[51]. In addition, MDSCs not only 
suppress the immune system during tumor 
progression, but they also accelerate tumor growth, 
metastasis, and angiogenesis through VEGF[52]. 
Tregs show interaction with MDSCs in cancer, and the 
activation of Tregs by MDSCs is mainly caused by 
cytokines, such as IL-10 and TGF-β, which are also 
associated with the induction of MDSCs[53]. In CRC, 
the presence of a large number of Tregs reportedly 
predicts a poor prognosis [54]. In our study, in the 
immune-activated microenvironment of cluster A, a 
large number of MDSCs, M2s and other immune cells 
were highly expressed, and such changes may be 
involved in the formation of anoikis resistance and 
promote tumor survival and metastasis. 

CRC gene mutation research has been hot 
recently. The differences between the high- and 
low-risk groups may be related to the anoikis-related 
genes mutation. We focused on the BRAF gene 
mutation group, which had a higher risk score than 
the BRAF wild group. BRAF mutations can affect the 
MEKERK pathway, allowing cancer cells to survive in 
the absence of integrin-involved survival signals[39, 
55]. This relationship has been previously demons-
trated in melanoma. Patankar et al. found that BRAF 
mutations induce anoikis resistance in CRC, 
suggesting that this mechanism is likely generated by 
activation of the accessible database and needs 
independent prognostic cohort validation. Second, 
more tests are required to verify the involvement of 
anoikis in CRC,suggesting that this mechanism is 
likely generated by activation of the RAS-RAF-ERK 
pathway[56]. 

Finally, the six selected genes (SIRT3, PIK3CA, 
ITGA3, DAPK1, PAK1, and CASP3) have been 
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reported in colorectal cancer. PIK3CA is considered to 
be an oncogene in the PI3K pathway in colorectal 
cancer. Its involvement in colorectal cancer initiation 
is attributed to the upregulation of death-domain- 
associated protein, establishing a positive feedback 
regulatory relationship that promotes colorectal 
cancer progression[57]. Conversely, SIRT3 plays a 
crucial role in colorectal cancer, acting as the primary 
mitochondrial deacetylase. Its silence results in a 
reduction of mitochondrial biogenesis and dysfunc-
tion, exacerbating oxidative stress, reducing 
antioxidant defenses, and enhancing the effectiveness 
of oxaliplatin treatment[58, 59]. This suggests that 
SIRT3 may serve as a therapeutic target in colorectal 
cancer.DAPK1 is almost unexpressed in poorly 
differentiated colorectal cancer cells and gradually 
decreases at the invasive front of colorectal cancer, 
further emphasizing its critical role in diminishing 
tumor cell migratory capabilit,[60, 61]. In contrast, 
PAK1, encoding the serine/threonine p21-activated 
kinase, plays a role in KRAS-driven colorectal cancer 
cell proliferation. Its knockout leads to cell growth 
inhibition and apoptosis induction, highlighting its 
importance in colorectal cancer cell proliferation[62]. 
ITGA3, a member of the integrin alpha chain protein 
family, is associated with recurrence risk in right- 
sided colorectal cancer. Its involvement in colorectal 
cancer development is through influencing cell 
migration and reactive oxygen species generation[63]. 
Finally, CASP3 gene knockout manifests as a 
reduction in the epithelial-mesenchymal transition 
(EMT) phenotype in colorectal cancer cells, including 
an increase in E-cadherin expression and a decrease in 
the expression level of N-cadherin ZEB1[64]. This 
suggests that CASP3 loss may influence the biological 
characteristics of colorectal cancer by regulating the 
cell mesenchymal state, slowing down tumor cell 
invasion and metastasis. These genes play crucial 
roles in the regulatory network of colorectal cancer, 
providing important clues for a deeper understanding 
of the pathogenic mechanisms and therapeutic targets 
in colorectal cancer. And the prognostic significance 
of the model based on the six genes can be further 
strengthened after we further integrate the clinical 
features, and the predicted prognostic nomogram can 
effectively achieve individualized risk assessment. 

Admittedly, our study has several limitations. 
First, our analysis is based on a publicly accessible 
database and needs independent prognostic cohort 
validation. Second, more tests are required to verify 
the involvement of anoikis in CRC. 

Conclusion 
In summary, our study identified two distinct 

modes of anoikis in CRC, with active metastasis- 

promoting pathways inducing the formation of the 
anti-anoikis subtype, which has a stronger propensity 
for metastasis and a worse prognosis than an 
anoikis-activated subtype. We found that massive 
infiltration of immune cells may be an important 
marker for the formation of anoikis resistance. A 
systematic evaluation of anoikis patterns in CRC 
patients will facilitate our understanding of anoikis- 
related pathway mechanisms, cellular infiltration 
characteristics of the TME and the establishment of 
individualized therapy for CRC patients.  
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