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Abstract

Background: CDCADS has been reported as a gene involved in the cell cycle, however current research
provides little details. Our goal was to figure out its functions and probable mechanisms in pan-cancer.

Methods: Pan-cancer bulk sequencing data and web-based analysis tools were applied to analyze
CDCADb5’s correlations with the gene expression, clinical prognosis, genetic alterations, promoter
methylation, alternative splicing, immune checkpoints, tumor microenvironment and enrichment. Real-
time PCR, cell clone formation assay, CCK-8 assay, cell proliferation assay, migration assay, invasion assay
and apoptosis assay were used to evaluate the effect of CDCAS silencing on colon cancer cell lines.

Results: CDCAS is highly expressed in most tumors, which has been linked to a poor prognosis. Immune
checkpoints analysis revealed that CDCAS was associated with the immune gene CD276 in various
tumors. Single-cell analysis showed that CDCAS correlated with proliferating T cell infiltration in
COAD. Enrichment analysis demonstrated that CDCAS5 may modify cell cycle genes to influence p53
signaling. The examination of DLD1 cells revealed that CDCAS increased the proliferation and blocked
cell apoptosis.

Conclusion: This study contributes to the knowledge of the role of CDCAS in carcinogenesis,
highlighting the prognostic potential and carcinogenic involvement of CDCAS in pan-cancer.
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1. Introduction

Globally, cancer is the most severe public health
problem and the primary cause of death [1]. Cancer
bioinformatics, which integrates cancer knowledge
with information technology, can be a beneficial
instrument for advancing cancer diagnosis, prognosis,
and therapy [2]. Due to the intricacy of the cancer
initiation mechanism, pan-cancer analysis is essential

for identifying the carcinogenic principle. As a
consequence of the publicly-supported TCGA project
and the openly accessible GEO database, functional
genomic studies can be conducted on all forms of
cancer [3].

The CDCADS protein encoded by the cell division
cycle-associated 5 (CDCAD) gene is essential for sister
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chromatid cohesion as well as segregation [4] .
CDCADb5 maintains the cohesive complex, preserving
sister chromatid cohesion and ensuring accurate
chromosome segregation during mitosis and meiosis;
it is also required for DNA repair [5]. In addition,
CDCAS affects the activity of transcription factors and
proteins associated with the cell cycle; it thus
promotes cancer cell growth and participation in
apoptosis [6]. Moreover, studies reveal that CDCA5
serves an important part in the progression of a wide
range of malignancies, including bladder cancer,
prostate cancer, ovarian cancer and breast cancer, and
participates in a variety of signaling pathways, such
as the ERK signaling pathway and the
PI3k/AKT/mTOR pathway [7-10].

Increasing numbers of research projects are
undertaken on CDCA5 each year. However, a
comprehensive bioinformatics investigation of the
activities of CDCAJ5 in carcinogenesis has not yet been
conducted. We conducted the first pan-cancer
analysis of CDCAD using data from the TCGA project
and the GEO database. In our work, we analyzed
CDCAS5 expression, survival status, DNA promoter
methylation, mutations in genes, alternative splicing,
immunological infiltration, tumor immune single
cells, and enrichment. To investigate the effect of
CDCAS5 silencing on colon cancer cell lines, cell
experiments were conducted. We evaluate all of these
factors to investigate the potential molecular
mechanism of CDCAS in the progression or clinical
prognosis for various cancers.

2. Materials and methods
2.1. Gene expression analysis of CDCAS

TIMER2 (Tumor immune estimation resource,
version 2, http:/ /timer.cistrome.org/) web is used to
observe the differential expression of CDCAS5 in
different cancer types and normal matched tissues,
which were retrieved from TCGA project. For certain
malignancies devoid of normal or with extremely
limited normal tissues, GEPIA2 (Gene expression
profiling  interactive  analysis, = version 2,
http:/ / gepia2.cancer-pku.cn/ #analysis) web server is
used to paint box plots of the expression difference
between these tumor tissues and the corresponding
normal tissues of the GTEx (Genotype-tissue
expression) database [11]. Using the "Pathological
Stage Plot" module of GEPIA2, we also obtained
violin plots of CDCA5 expression in distinct
pathological stages of all TCGA tumors. The log2
[TPM(Transcripts per million) + 1] transformation
was applied to the expression data for box and violin
plots. It is essential to determine the CDCAS protein
expression in multiple organs. The UALCAN portal

(http:/ /ualcan.path.uab.edu/index.html), an
interactive web resource for studying cancer omics
data, was used to analyze a total expression level of
CDCA5 protein and CDCA5 promoter methylation
[12-14]. The Human Protein Atlas (HPA) database
(https:/ /www.proteinatlas.org/) was used to further
analyze the expression of CDCAS5 protein in several
organs.

2.2. Survival prognosis analysis

Using the "Survival Map" module of GEPIA2, we
obtained overall survival (OS) and disease-free
survival (DFS) significance map data for CDCA5
across all TCGA tumors. Expression thresholds of
cutoff-high (50%) and cutoff-low (50%) values were
used to divide the high-expression and low-expres-
sion cohorts. Hypothesis testing was conducted using
the log-rank test, and survival plots were generated
using the "Survival Analysis" module of GEPIA.

2.3. Genetic alteration analysis

cBioPortal webtool (http://cbioportal.org/) was
utilized to assess the genetic alteration of CDCAS [15,
16]. In the "Cancer Types Summary" module, the
results of the alteration frequency, mutation type, and
copy number (CNA) across all TCGA tumors were
displayed. We also obtained the mutated site
information of CDCAD in the “Mutations” module.
Additionally, we used the "Comparison/Survival"
module to evaluate the disease-specific, progression-
free  survival  differences  for  esophageal
adenocarcinoma (EAC) with or without CDCA5
genetic alteration. The Kaplan-Meier plotter was used
to graphically display the pertinent data, and the
log-rank test was applied to determine statistical
significance.

2.4. Alternative splicing analysis of CDCAS5

The OncoSplicing database (http://www
.oncosplicing.com) is a database designed to
comprehensively  examine  clinically  relevant

alternative splicing (AS) [17]. We used it to search for
the AS events of CDCA5 included in both the
SplAdder and the SpliceSeq projects. The PanPlot was
displayed to show the percent spliced-in (PSI) of
TCGA cancers and GTEx tissues. The PanDiff plots
were displayed in order to assess the PSI differences
of the AS events (detected in more than three tumors)
between malignancies and nearby or GTEx normal
tissues. The Kaplan-Meier curves were then utilized
to investigate the prognostic importance of the AS
events in pan-cancer.

2.5. Tumor microenvironment (TME) analysis
and immune checkpoint analysis

With R packages, we compared the degree of
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infiltration of 24 immune cells in various tumors.
Tumor Immune Estimation Resource (TIMER,
https:/ / cistrome.shinyapps.io/ timer/) is a
database-driven online tool that computes immune
cell infiltration scores for primary immune cell types
[18, 19]. We utilized it and TIMER2 to find the
correlation between CDCA5 expression and the
infiltration level with B cells, CD4+ T cells, CD 8+ T
cells, macrophages, neutrophils, and dendritic cells.

We employed the "Gene_Corr" module of
TIMER2 to analyze the correlation between CDCA5
expression and expression of several immune
checkpoint genes across all cancer types.

Tumor Immune Single-Cell Hub (TISCH,
http:/ /tisch.comp-genomics.org) offered
comprehensive annotations of cell types and enabled
interactive single-cell transcriptome visualization [20].
Multiple datasets at the single-cell or cluster level
were utilized to examine the TME of colon cancer.

2.6. Enrichment analysis of CDCAS5

The STRING (https://string-db.org/) is a
webtool to construct a Homo Sapiens CDCAbS
co-expression network [21]. We set the following main
parameters: minimum required interaction score
[“Low confidence (0.150)”], meaning of network
edges (“evidence”), max number of interactors to
show (“no more than 50 interactors” in 1st shell) and
active interaction sources (“experiments”). Using the
datasets of all TCGA tumor and normal tissues, the
"Similar Gene Detection" module of GEPIA2 was
utilized to identify the top 100 CDCAb5-correlated
targeting genes. Additionally, we utilized the
"correlation analysis" module of GEPIA2 to conduct a
pairwise gene Pearson correlation study between
CDCADS and chosen genes. Applying the log2 TPM on
the dot plot. Indicated were the P-value and the
correlation coefficient (R). In addition, we utilized the
"Gene_Corr" module of TIMER2 to provide the
heatmap data of the chosen genes, which includes the
partial correlation (cor) and P-value from the
purity-adjusted Spearman's rank correlation test. To
compare the genes encoding proteins that bind to
CDCADS5 with the genes that interact with CDCAS5, a
Venn diagram was used to identify the genes at the
intersection of these two sets. KEGG (Kyoto
encyclopedia of genes and genomes) pathway and
GO (Gene ontology) enrichment analysis were then
performed on the genes encoding CDCA5-binding
proteins and the CDCAb-interacting genes using the
R, version 4.1.2 [22, 23].

2.7. Cell culture

The human colorectal cancer cell line DLD1 was
purchased from Procell Life Science& Technology Co.,

Ltd (Wuhan,China), which was cultured in DMEM
supplemented with 10% heat-inactivated fetal bovine
serum (FBS) (Sijiging Biologic, Hangzhou, China) and
was incubated at 37°C in a humid incubator with air
containing 5% CO2. CDCAS siRNA#1 sequences were
as follows: sense: 5-CCUCUUCUUGACCUGAAC
AAUTT-3’; antisense: 5-AUUGUUCAGGUCAAGA
AGAGGTT-3'. CDCA5 siRNA#2 sequences were as
follows: sense: 5-CCAAAUACUUUCGGACCCAA
ATT-3’; antisense: 5'-UUUGGGUCCGAAAGUAUUU
GGTT-3'.

2.8. Quantitative real-time PCR

RNA was isolated from cells using TRIzol
reagent (Solarbio Science and Technology Co. Beijing,
China). Quantitative PCR analysis was performed
with the SYBR-Green PCR master mix (TransGen
Biotech Beijing, China) on a CFX96 Real-Time PCR
detection system (Bio-Rad). Primer sequences were as
follows: CDCA5 forward, 5-TGTGCTCCAAACTCA
CCGAG-3' and reverse 5-TCATCCAGCTCCGT
TTTCAAG-3'. Relative mRNA expression levels were
determined with the internal control GAPDH using
the 2-AACq method.

2.9. Cell clone formation assay

After transfection, cells were digested and
counted. Each group's cells were seeded into a 6-well
plate at a density of 1¥10% well. Following 14 days of
incubation in a CO2 incubator, the cells were fixed
with polyformaldehyde and stained with crystal
violet. A limited cluster of over 100 cells is considered
a colony. Using Image] software, clone formation was
photographed and the number of colonies was
determined.

2.10. CCK-8 assay and cell proliferation assay

After 24 hours of transfection with siRNA of
CDCAS5, DLD1 cells were seeded into microplates for
further detection. Cell viability assays were
performed using Cell Counting Kit-8 (CCKS)
colorimetric assay (Fude Biological Technology,
Hangzhou, China) at a wavelength of 450 nm by
spectrophotometry. Cell proliferation was evaluated
by  5-ethynyl-2'-deoxyuridine  (EdU) staining
according to manufacturer’ s instructions (Bioscience
Biological Technology, Shanghai, China).

2.11. Migration assay and invasion assay

Transfected cells were seeded into 8-m pore
inserts for transwell migration tests after 24 hours. To
induce cell migration, 1% FBS was added to the upper
chamber, whereas 10% FBS was added to the lower
chamber. After 48 hours of migration, the cells were
stained with 0.1% crystal violet and examined using a
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microscope. The cell invasion tests resembled the
assay for cell migration. ImageJ software was utilized
to count cells.

2.12. Apoptosis assay

According to the instructions of the kit
(Bioscience Biological Technology, Shanghai, China),
cells were digested with pancreatin without EDTA
and collected, recovered in the medium for 30min and
then suspended. Annexin V FITC and PI working
fluid were added sequentially as specified, and the
mixture was incubated on ice against light for 15
minutes. When the cells were resuspended, Cytoflex
flow cytometer (Becman,CA, USA) was used to
identify —apoptosis. The stimulated reception
wavelength of FITC-Annexin V is 488/530 mm,
whereas the PI emission spectrum is around 617 nm.

2.13. Statistical analysis

The SPSS 22.0 program (IBM Company,
Armonk, NY, USA) was used to analyze the data. The
chi-square and Fisher's exact probability tests were
used to examine the count data, while the Student's
t-test was used to study the measurement data. The
Kaplan-Meier and log-rank tests were used to assess
survival curves. Experimental data were presented as
mean + SEM. GraphPad Prism software was used for
statistic ~graphs and statistical analysis. The
comparison between two unpaired groups was
performed using Student's t-test. p < 0.05 was

Gene expression —
GEPIA 2 TIMER2.0 ¢A°

considered statistically different.

3. Results

3.1. Gene expression analysis of CDCAS5

Figure 1 presents a flowchart illustrating the
comprehensive process of this investigation. The
expression status of CDCA5 was analyzed across
multiple TCGA cancer types utilizing the TIMER2
method. Figure 2A displays that the expression level
of CDCADS in the tumor tissues of Bladder urothelial

carcinoma (BLCA), Breast invasive carcinoma
(BRCA), Cholangiocarcinoma (CHOL), Colon
adenocarcinoma (COAD), Esophageal -carcinoma

(ESCA), Glioblastoma multiforme (GBM), Head and
neck squamous cell carcinoma (HNSC), Kidney
chromophobe (KICH), Kidney renal clear cell
carcinoma (KIRC), Kidney renal papillary cell
carcinoma (KIRP), Liver hepatocellular carcinoma
(LIHC), Lung adenocarcinoma (LUAD), Lung
squamous cell carcinoma (LUSC), Prostate
adenocarcinoma (PRAD), Rectum adenocarcinoma
(READ), Stomach adenocarcinoma (STAD), Uterine
corpus endometrial carcinoma (UCEC) (P <0.001),
Cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), Pheochromocytoma and
paraganglioma (PCPG), and Thyroid carcinoma
(THCA) (P <0.01) is higher than the matched control
tissues.
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Figure 1. A summary of the entire study. A variety of methods and webtools are utilized in the study.
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Figure 2. The expression status of CDCAS gene in various tumors and pathological phases. (A) The mRNA of CDCAS gene expression levels in different cancers or specific
cancer subtypes were analyzed through TIMER2. (B) IHC results obtained from HPA database, show different CDCAS protein expression between normal tissue and tumor in
colon and kidney cancers, using the Antibody HPA023691. (C) As controls for the DLBC, LAML, OV, PAAD, SKCM, THYM, and UCS types in the TCGA project, the matching
normal tissues from the GTEx database were included. Box plot data were provided. (D) Utilizing the CPTAC dataset, the expression levels of CDCAS total protein between
normal tissue and primary tissue of clear cell RCC, colon cancer, head and neck squamous carcinoma, lung adenocarcinoma, ovarian cancer, pancreatic adenocarcinoma, and
UCEC were compared. (E) The mRNA expression levels of the CDCAS5 gene were evaluated by the major pathological phases of KICH, KIRC, KIRP, LIHC, LUAD, LUSC, and
BRCA using data from TCGA. Log2 (TPM + 1) was used for log-scale. * P <0.05, ** P <0.01; *** P <0.001.

Based on the data presented in Figure 2C,
normal tissue samples from the GTEx dataset were
incorporated as controls, we evaluated the differential
expression of CDCA5 between normal and tumor
tissues in Lymphoid neoplasm diffuse large B-cell
lymphoma (DLBC), Acute myeloid leukemia (LAML),
Ovarian serous cystadenocarcinoma (OV), Pancreatic
adenocarcinoma (PAAD), Sarcoma (SARC), Skin
cutaneous melanoma (SKCM), Thymoma (THYM)
and Uterine carcinosarcoma (UCS) with a significance
level of P <0.05. As demonstrated in Figure S1A, there
was no statistically significant difference between
Adrenocortical carcinoma (ACC), Brain low-grade
glioma (LGG), and Testicular germ cell tumors
(TGCT).

After excluding cancers with a small sample size
(Figure S1B), we have observed a significant increase
in the total protein expression of CDCAS5 in primary

tissues of clear cell RCC, colon cancer, head and neck
squamous carcinoma, ovarian cancer, lung
adenocarcinoma, and UCEC compared to normal
tissues based on the CPTAC dataset. However, the
total expression of CDCAS protein in PAAD tissues
was significantly lower than that in corresponding
normal tissues (Figure 2D; P<0.001). Based on the
HPA database, an immunohistochemistry (IHC)
analysis was conducted to confirm CDCA5 mRNA
expression at the cellular level with corresponding
protein expression data (Figure S1C). High levels of
cytoplasmic/membranous and nuclear immuno-
reactivity were detected in colon and kidney cancers,
as determined by the HPA023691 antibody (Figure
2B).

Additionally, a clinical correlation analysis was
performed to establish the association between
CDCA5 mRNA expression and tumor pathological
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stages. The clinical correlation analysis included
various tumor types from TCGA, revealing significant
differences in CDCA5 mRNA expression between
KICH, KIRC, KIRP, LIHC, LUAD, LUSC, BRCA and
their respective normal matched tissues (Figure 2E;
P<0.05).

3.2. Survival analysis of CDCAS

We categorized cancer cases into high and low
expression groups based on the level of CDCA5
expression, and primarily utilized TCGA and GEO
datasets to assess the correlation between CDCA5
expression and patient prognosis across various
cancers. Cancers with elevated CDCA5 expression
levels are associated with a dismal prognosis for
overall survival (OS), such as ACC (P=2.5E-06), KIRC
(P=0.0097), KIRP (P=0.0082), LGG (P=0.00026), LIHC
(P=0.00021), LUAD (P=0.0056), MESO (P=9.7e-08),
PAAD (P=0.024), PRAD (P=0.025), and SKCM
(P=0.016) (Figure 3A; Figure 3B). Furthermore,
reduced CDCA5 gene expression was linked to
unfavorable overall survival prognosis in THYM
(P=0.026) and UCS (P=0.024).

Analysis of disease-free survival (DFS) data
demonstrated that cancers with high CDCA5
expression have a poor prognosis of ACC (P=6.6e-05),
KIRC (P=0.043), KIRP (P=0.00028), LGG (P=0.0064),
LIHC (P=0.00014), MESO (P=0.019), PAAD (P=0.025),
PCPG (P=0.03), PRAD (P=0.00048), and THCA
(P=0.012) (Figure 3C; Figure 3D).

3.3. Gene promoter methylation analysis of
CDCAS

Using the UALCAN dataset, an analysis of the
methylation levels of the CDCA5 gene promoter
showed the possible role of CDCAS across all cancer
types. After eliminating tumors with insufficient
sample size (Figure S1D), significantly reduced
methylation levels of the CDCA5 promoter were seen
in 13 kinds of cancer, including BLCA, BRCA, COAD,
HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD,
TGCT, THCA, and UCEC (Figure 4A; P<0.001).

3.4. Genetic alteration analysis of CDCA5

Subsequently, cBioPortal was utilized to
scrutinize the genomic aberrations of CDCAS5 across
diverse malignancies encompassed in TCGA datasets.
Based on the analysis of Figure 4B, individuals with
uterine carcinosarcoma (UCS) of the "amplification"
subtype exhibit the highest frequency (>5%) of
CDCADS alterations. It is interesting to emphasize that
copy number amplification was the predominant
form of genomic mutation seen in TCGA tumor
samples. Figure 4C depicts a total of 40 CDCA5
alterations, including 34 missense mutations, 3
truncating mutations, and 3 splice mutations

(Supplementary Table S1). We subsequently explored
the correlation between genetic mutations in CDCA5
and clinical outcomes of cancer patients. EAC patients
with altered CDCA5 had a lower prognosis for
disease-specific ~ survival (P  =7.542e-3) and
progression-free survival (P =0.0578) (Figure 4D;
Supplementary Table S2).

3.5. Alternative splicing analysis of CDCAS5

Alternative splicing (AS) is a frequent kind of
post-transcriptional modification that generates
diverse transcripts, proteins, and noncoding RNAs.
Its dysregulation is common in malignancies and
influences carcinogenesis [24]. We analyzed the AS
events on OncoSplicing, only one known clinical
relevant CDCADJ5_alt_3prime_48428 event was
identified. Figure 5A depicted the splicing mechanism
and PSI of CDCAb_alt _3prime_48428 in pan-cancer;
OV and STAD malignancies exhibit a higher PSI
compared to normal samples. Figure 5C showed the
difference in PSI values of the CDCAS5_alt 3prime_
48428 event between malignant and normal tissues,
together with its prognosis in 33 types of TCGA
Cancers (Figure 5B). High PSI predicted longer OS in
ACC, COAD, BRCA, LGG, LUAD, MESO and SKCM.
However, elevated PFI was found to be significantly
associated with reduced overall survival in patients
with BLCA and CESC, as illustrated in Figure 5D. The
significance of controlled CDCA5 As events in the
progression of cancer was indicated by these data.

3.6. The relationship between CDCAS5
expression and immune infiltrating level

We examined the correlation between CDCA5
expression and immune cell infiltration levels in
various types of cancer using TCGA data. We utilized
R packages to compare the degree of immune cell
infiltration and identified a significant correlation
between immune cells and various cancers, including
KIRC, COAD, STAD, THCA, and THYM (Figure 6A).
Using the infiltration scores of six immune cell types
(B cell, CD4+ T cell, CD8+ T cell, neutrophil,
macrophage, and dendritic cell) accessible through
the TIMER and TIMER?2 databases, we further study
the link between the six immune cells and these five
tumors (Figure 6B). According to the attached linear
regression plots from KIRC, COAD, and THCA, an
increase in immune cell infiltration is associated with
an increase in CDCA5 expression. Except for
neutrophils, a rise in immune cell infiltration is
associated with a rise in CDCAS expression in THYM.
In contrast, the relationship between CDCA5
expression and immune cell infiltration in STAD is
negative (Figure 6C).
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Figure 3. Correlation between CDCAS gene expression and survival prognosis of cancers in the TCGA database. GEPIA2 was employed to analyze overall survival (A, B) and
disease-free survival (C, D) of various tumors in TCGA by CDCAS gene expression. The survival map and Kaplan—Meier plots with significant results are provided. Red and blue
dashed lines represent the 95% confidence intervals for overall survival in the high and low CDCAS5 groups, respectively.

3.7. The relationship between immune
checkpoints and CDCAS5S

Multiple genes are now closely linked to and
acknowledged as components of immune response
checkpoints. With the utilization of TIMER2, we were
able to assess whether there exists a correlation
between CDCA5 expression and the expression of
checkpoint genes. First, in THYM, CDCA5 has
positive relationships with ADORA2A, CD200,
CD244, CD28, CD40LG, TNFSF4, CD27, HHLA2,
ICOS, LAIR1, PDCD1, TM1GD2, and LGALS9,
whereas it has negative relationships with CD276,

NRP1, LAG3, CD40, ICOSLG, CD86, etc. Further-
more, a significant correlation was observed between
CDCAS5 and the majority of immune checkpoints in
THCA. A moderately positive connection existed
between CDCA5 and immune checkpoints in LIHC,
KIRC, BLCA, and COAD. Moreover, CDCA5
exhibited a negative correlation with the majority of
immune checkpoints in both CESC and GBM. It is
noteworthy that a strong correlation (P<0.05) between
CDCA5 and checkpoint gene expression was
observed, which was found to be associated with
immune gene CD276 in various types of cancer
(Figure 6D).
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Figure 4. Changes in the CDCA5 DNA molecule in various TCGA cancers. (A) The promoter methylation levels of CDCAS5 across 13 types of tumors. *** P <0.001. (B) The
alteration frequency with CDCAS genetic alteration type in different tumors. (C) CDCAS mutation site. (D) The association between mutation status and disease-specific

survival and progression-free survival of EAC.

3.8. The relationship between CDCAS5 and
TME

Given that the results of COAD were significant
in multiple analyses, we focused on colorectal cancer
(CRC) to learn more. Two datasets of colorectal cancer
(CRC GSE13639%4 and CRC GSE139555) from TISCH
were analyzed to investigate the correlation between
CDCA5 expression and tumor microenvironment
(TME). CDCAS5 expression in CRC was concentrated
in proliferating T cells, as illustrated in Figure 7A.
Figure 7B and 7C depict the distribution and 12

categories of immune-related cells in the TME. It is
worth noting that there was a positive correlation
between CDCAS5 expression and the extent of
infiltrating T cell proliferation (Figure 7D-G).
Consequently, our findings revealed that CDCAS5 may
influence the TME and that proliferating T cells could
play a critical role in CRC.

3.9. Enrichment analysis of CDCAS5

To further examine the biological function of the
CDCA5 gene in carcinogenesis, we screened for
proteins that bound to CDCA5 and genes whose
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expression was correlated with CDCAS, followed by
pathway enrichment studies. The STRING database
was used to identify 35 CDCAb5-binding proteins
supported by experimental data. The protein
interaction network is illustrated in Figure 8A. We
utilized the GEPIA2 method to aggregate all TCGA
tumor expression data and found the top 100 genes
whose expression was linked with CDCAS5
expression. The expression level of CDCA5 is
positively correlated with the genes BUB1 (R=0.76),

CCNB2 (R=0.8), FEN1 (R=0.78), KIF2C (R=0.82) and
NCAPH (R=0.82) as depicted in Figure 8B, with a
significance level of P<0.001. In most of the
designated cancer types, the matching heatmap data
likewise revealed a positive connection between
CDCADJ and the mentioned five genes (Figure 8C). An
analysis of the overlap between the two
aforementioned groups revealed four common
members, namely PLK1, SGOL1, CDK1 and KIF14
(Figure 8D; Supplementary table S3).
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Figure 5. CDCAS alternative splicing correlated to patient prognosis. (A) The splicing mode and the PSI of CDCAS_alt_3prime_48428 in pan-cancer. (B) Prognosis of
CDCADS_alt_3prime_48428 event in 33 types of TCGA Cancers. (C) Difference in PSI values of the CDCAS5_alt_3prime_48428 event between the tumor and normal tissues.
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Figure 6. Correlation analysis between CDCAGS expression and immune microenvironment. (A) Lollipop chart comparing the degree of infiltration of the 24 immune cells in
KIRC, COAD, THCA, THYM, and STAD. (B) Associations between CDCAS5 expression and the degree of immune cell infiltration in different malignancies utilizing the infiltration
scores of six immune cell types (B cell, CD4+ T cell, CD8+ T cell, neutrophil, macrophage, and dendritic cell) from the TIMER2 database and TCGA. (C) A strong connection
between CDCAS expression and the degree of immune cell infiltration in 5 tumors (KIRC, COAD, THCA, THYM, and STAD) using the infiltration scores of six immune cell
types (B cell, CD4+ T cell, CD8+ T cell, neutrophil, macrophage, and dendritic cell) accessible in the TIMER database and obtained from TCGA. (D) The correlation between

CDCAS5 and immune checkpoints in different cancer types.

We integrated the two datasets to conduct
enrichment studies for KEGG and GO. The majority
of these genes are associated to the cell cycle,
according to GO enrichment analysis results, such as
“nuclear division”, “sister chromatid segregation”
and “mitotic nuclear division” (Figure 8E). The KEGG
data indicates that “DNA replication” and “cell cycle”
may have a role in the influence of CDCA5 on tumor

pathogenesis (Figure 8F).

3.10. CDCAS silencing decreases cell
proliferation and enhances apoptosis

In DLD1 cells transfected with CDCA5 siRNA,
the mRNA expression level of CDCA5 was
dramatically reduced compared to that of Si-Ctrl,
showing that CDCAS was successfully knocked down
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(Figure 9A). Significantly lower cell viability was seen
following CDCAD5 silencing (Figure 9B). Figure 9D
demonstrates that the percentage of positive
EdU-labeled signals decreased dramatically after

CDCAb5 expression was decreased. Flow cytometric
analysis found an increase in early and overall
apoptosis rates after CDCA5 downregulation (Figure
9G).
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Figure 8. CDCAGS-related gene enrichment analysis. (A) Using the STRING tool, we obtained the available experimentally determined CDCAJ5-binding proteins. (B) We
retrieved the top 100 CDCAGS-correlated genes in TCGA projects using the GEPIA2 method and evaluated the expression correlation between CDCAS and chosen targeted
genes, including BUBI, CCNB2, FENI1, KIF2C and NCAPH. (C) The matching heatmap data for each form of cancer is displayed. (D) We did an intersection analysis of the
CDCADS-binding and associated genes. (E) On the basis of CDCAS5-binding and interacting genes, GO analysis was conducted. (F) On the basis of CDCAS5-binding and interacting

genes, KEGG pathway analysis was conducted.

3.11. CDCAS silencing inhibits cell migration
and clone formation

After transfection with CDCA5 siRNA, the
migration and invasion abilities of DLD1 cells were
dramatically reduced compared to Si-Control. Figures
9E and 9F displayed the quantitative results of the
migration experiment and invasion assay,
respectively. In addition, as depicted in Figure 9C,
CDCA5 knockdown impeded the capacity of DLD1
cells to generate clones.

4. Discussion

Cancer is a severe danger to human health and

the leading cause of illness and mortality on a global
scale [1]. Recently, the focus of cancer research and
therapy has shifted to the molecular and genetic levels
with the advent of innovative treatments [25]. The
CDCADb5 gene encodes the sororin-containing CDCA5
protein, which was initially discovered as a substrate
of the anaphase-promoting (APC) complex and was
shown to regulate sister chromatid cohesion [26, 27].
Emerging papers have suggested a functional
connection between CDCAb5 and clinical pathologies,
including cancer [7-10]. The question of whether
CDCAS5 can have a role in the pathogenesis of a
variety of cancers via shared molecular processes is
unsolved.
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Figure 9. Effect of CDCAS silencing on DLD1 cell proliferation, apoptosis, migration and clone formation abilities. (A) mMRNA level of CDCADS after Si-CDCADS transfection. (B)
The viability of DLD1 cells after Si-CDCAS transfection. (C) Cell clone formation after CDCAS5 knockdown. (D) Cell proliferation after CDCAS5 knockdown. (E) CDCAS5-siRNA

reduced the migration of colon cancer cells. (F) CDCAS5-siRNA reduced the invasion of colon cancer cells. (G) Cell apoptosis after CDCA5 knockdown. *p < 0.05, **p < 0.01,
#¥p < 0.001, ¥**p < 0.001.

Previous research has demonstrated that 33 tumors has not been comprehensively studied. In
downregulation of CDCAS5 suppresses several tumor  our study, we discovered that CDCA5 is highly
growth [7-10]. However, the expression of CDCA5 in  expressed in the majority of cancers and is extensively

https://lwww.jcancer.org



Journal of Cancer 2024, Vol. 15

838

expressed in a range of organs. Studies have shown a
correlation between decreased DNA methylation and
an increase in mMRNA expression [28]. Gene
expression analysis of CDCAS reveals that CDCA5
promoter methylation levels, mRNA and protein
expression levels were consistent in KIRC, COAD,
HNSC, LUAD, and UCEC, and high CDCA5
expression was related with the development of
cancer. In addition, increased CDCAS5 expression is
highly related to the advanced stage of cancer,
indicating malignant development. Survival study
also demonstrated a correlation between CDCA5
overexpression and poor OS and DFS. Accumulating
evidence suggests that genetic alterations play a role
in tumor growth and treatment response [29]. To
determine if CDCA5 mutations affect the clinical
outcomes of cancer patients, we found that CDCA5
alterations may be a risk factor for esophageal
adenocarcinoma patients. Former studies have
demonstrated that alternative splicing increases
transcriptome diversity, and nearly all human
multiexon genes undergo this process [30]. To further
explore the changes at the gene expression level, we
assess the expression level of CDCAD in malignancies
with respect to alternative splicing, and we compute a
score based on the OS event and PSI difference, where
OV and STAD samples had a higher PSI than normal
samples. The analysis of splicing factor survival based
on PSI values demonstrates that CDCA5 is
significantly related with the overall survival of
numerous cancers, including ACC, COAD, BLCA, etc.
Knowing these helps answer questions about the
pathophysiology of cancer and ultimately confirms
CDCAS as a potential therapy target.

Immune cells interact greatly with cancer cells
and play a crucial influence on cancer migration and
metastasis in several types of tumors [31, 32]. The
tumor microenvironment (TME) is crucial for the
proliferation and development of tumor cells [33].
Thus, we have shed light on the association between
CDCAD5 expression level and immune cell infiltration
in certain cancers. Elevated CDCA5 expression is
associated with an increase in immune cell infiltration
in KIRC, COAD and THCA, which suggests that
CDCA5 is closely related to tumor TME. It is
noteworthy that the expression level of CDCA5 has a
correlation with the immune infiltration level in
THYM, except for neutrophil. Former studies
demonstrated that neutrophils may assist in cancer
metastasis promotion through different methods
[34-36]. Therefore, it may explain why CDCA5
overexpression was related with a good prognosis in
THYM. Multiple studies have demonstrated that
immune checkpoint genes are highly expressed in a
diverse range of tumors and interact positively with

tumor progression and poor prognosis [37]. One of
the most important novel cancer therapy techniques is
immunotherapy and the most commonly used drugs
in immunotherapy are those that target and suppress
immune checkpoint pathways [38, 39]. However, the
relationship between CDCAS expression and immune
checkpoint has not been studied. Our study revealed a
strong connection between CDCA5 and the immune
gene CD276 in various cancer types. There is evidence
to support the notion that the CD276, also referred to
as B7 homolog 3 protein (B7-H3), is a recently
discovered member of the B7 family of
immunoregulatory  proteins. It has garnered
significant interest as a potential target for cancer
immunotherapy due to its high expression in tumor
tissues and low expression in normal tissues [40].
Additionally, B7-H3 plays a role in shaping and
developing TME. To date, several immunotherapy
approaches utilizing B7-H3 have exhibited robust
anticancer efficacy and satisfactory safety profiles in
preclinical animal models [41]. The results of our
study hold promise for generating novel concepts
within the realm of tumor immunotherapy, therefore
fostering the advancement of inventive therapeutic
strategies. The association between CDCA5 and
immunological checkpoints in LIHC, KIRC, BLCA,
COAD and THCA was positive, so it is not difficult to
comprehend why CDCADb overexpression was related
with a bad prognosis in these four cancers. Then we
focused on colorectal cancer to learn more about the
relationship between CDCA5 expression and TME.
The TISCH study proved that CDCA5 was
moderately expressed in immune cells and had a
strong association with proliferating T cells,
indicating that CDCA5 was implicated in the immune
regulatory network by enhancing immune activation
in colorectal cancer. Collectively, our research
illuminates the underlying role of CDCAS5 in cancer
immunity.

Integrating information on the CDCA-binding
proteins and the genes related with CDCAS5
expression across the various cancer types, the
findings of enrichment analysis showed the potential
function of CDCA5 protein. Our investigation
revealed that the CDCADS expression level is positively
connected with the BUB1, CCNB2, FEN1, KIF2C, and
NCAPH genes, all of which produce proteins
involved in cell cycle regulation and DNA repair
[42-46]. Based on the GO and KEGG pathway
analyses, we found that CDCA5 may be involved in
the signal control of the p53 pathway via altering
genes involved in the cell cycle, which was consistent
with the findings of prior research [47]. Given that the
COAD results were significant in multiple analyses
and that the relationship between COAD and CDCA5
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had not been investigated, we concentrated on colon
cancer to verify the relationship between CDCD5 and
tumors. The results of cell experiments showed that
CDCAD5 knockdown inhibits the growth of DLD1 cells
and the capacity of DLD1 cells to generate clones, but
increases early and overall apoptosis rates. The DNA
replication activity of the cells was diminished and
their potential to proliferate was decreased. The
migration and invasion abilities of DLD1 cells were
also dramatically reduced after CDCAS silencing. Our
findings demonstrated that CDCA5 promoted cancer
cell growth and inhibited apoptosis in vitro, which
were consistent to the bioinformatic analyses.

5. Conclusion

Our study was the first to do a thorough
pan-cancer investigation of CDCAS5, and the results
demonstrated a significant link between CDCA5
expression and clinical prognosis, DNA methylation,
tumor mutation, alternative splicing, immune infiltra-
tion, immune checkpoints, tumor microenvironment
and protein interaction network, which contributes to
the knowledge of the role of CDCADS in carcinogenesis
through the perspective of clinical tumor samples.
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