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Abstract 

Background: Lung adenocarcinoma is a common malignant tumor that ranks second in the world and has a 
high mortality rate. G protein-coupled receptors (GPCRs) have been reported to play an important role in 
cancer; however, G protein-coupled receptor-associated features have not been adequately investigated. 
Methods: In this study, GPCR-related genes were screened at single-cell and bulk transcriptome levels based 
on AUcell, single-sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network 
(WGCNA) analysis. And a new machine learning framework containing 10 machine learning algorithms and 
their multiple combinations was used to construct a consensus G protein-coupled receptor-related signature 
(GPCRRS). GPCRRS was validated in the training set and external validation set. We constructed 
GPCRRS-integrated nomogram clinical prognosis prediction tools. Multi-omics analyses included genomics, 
single-cell transcriptomics, and bulk transcriptomics to gain a more comprehensive understanding of 
prognostic features. We assessed the response of risk subgroups to immunotherapy and screened for 
personalized drugs targeting specific risk subgroups. Finally, the expression of key GPCRRS genes was verified 
by RT-qPCR. 
Results: In this study, we identified 10 GPCR-associated genes that were significantly associated with the 
prognosis of lung adenocarcinoma by single-cell transcriptome and bulk transcriptome. Univariate and 
multivariate showed that the survival rate was higher in low risk than in high risk, which also suggested that the 
model was an independent prognostic factor for LUAD. In addition, we observed significant differences in 
biological function, mutational landscape, and immune cell infiltration in the tumor microenvironment between 
high and low risk groups. Notably, immunotherapy was also relevant in the high and low risk groups. In addition, 
potential drugs targeting specific risk subgroups were identified. 
Conclusion: In this study, we constructed and validated a lung adenocarcinoma G protein-coupled 
receptor-related signature, which has an important role in predicting the prognosis of lung adenocarcinoma and 
the effect of immunotherapy. It is hypothesized that LDHA, GPX3 and DOCK4 are new potential targets for 
lung adenocarcinoma, which can achieve breakthroughs in prognosis prediction, targeted prevention and 
treatment of lung adenocarcinoma and provide important guidance for anti-tumor. 

Keywords: Lung adenocarcinoma, G-protein-coupled receptors, Multi-omics, Single-cell RNA-seq, Prognosis, Immunotherapy 
efficacy, Machine learning
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Introduction 
As a leading cause of cancer-related morbidity 

and mortality, lung cancer accounts for approxi-
mately 20% of cancer-specific deaths worldwide[1]. 
Of these, non-small cell lung cancer (NSCLC) 
accounts for 85% of lung cancers, while lung 
adenocarcinoma (LUAD) accounts for half of all 
NSCLCs[2]. Currently, the overall survival (OS) of 
patients with LUAD remains poor, with a 5-year 
overall survival (OS) rate of 19%[3] LUAD patients 
Exhibiting molecular and genetic heterogeneity[4, 5]. 
The In recent years, immunotherapy has shown 
significant efficacy in LUAD, but drug resistance and 
recurrence due to tumor heterogeneity still limit the 
efficacy of immunotherapy[6, 7]. The efficacy of 
immunotherapy is limited by the heterogeneity of 
tumors, resistance and recurrence. Therefore, we need 
to seek a new marker to develop new tools for 
predicting prognosis and immunotherapy efficacy to 
optimize personalized treatment strategies and 
improve patient survival. 

G-protein-coupled receptors (GPCRs) are the 
largest family of cell surface signaling receptors 
known to play important roles in a variety of 
physiological functions, including tumor growth and 
metastasis[8]. GPCRs are the largest family of cell 
surface signaling receptors known to play important 
roles in multiple physiological functions including 
tumor growth and metastasis. In mammals, GPCRs 
comprise five major families, the largest being the 
Rhodopsin family, or class A, with approximately 284 
members in humans (plus approximately 380 
olfactory receptors), followed by the adhesion GPCRs 
family with 33 members, the glutamatergic family 
(class C), the secretin family (class B), and the 
convolvulus family. 22, 15, and 11 members, 
respectively[9, 10]. Studies have shown that GPCRs 
and their agonists are involved in growth stimulation 
of many solid tumors, including lung, colon, prostate, 
breast, and pancreatic cancers[11]. In addition, GPCRs 
dysregulation has been associated with a variety of 
human diseases and disorders including type II 
diabetes mellitus[12]. Alzheimer's disease[13] , 
hypertension[14] and heart Failure[15]. GPCRs also 
regulates proliferative signaling, replication 
immortality, growth inhibitor evasion, apoptosis 
resistance, angiogenesis initiation, and invasion and 
metastasis activation, which are thought to be 
hallmarks of cancer[16]. Recently, it has also been 
reported that several GPCRs members are associated 
with cancer progression and are frequently 
overexpressed in a variety of human cancers, 
including glioblastoma, colorectal cancer, and 
gallbladder cancer[17-21]. Multiple GPCRs are critical 
for tumor developmental processes, including tumor 

progression and survival[22]. Despite the growing 
evidence that GPCRs may play an important role in 
tumor biology, few studies have explored the 
potential of GPCRs in lung adenocarcinoma clinics, 
for example, as biomarkers for prognostic analysis of 
patients or for predicting patient response to 
immunotherapy, which represents an important area 
for future research. 

In this study, we performed a comprehensive 
analysis of the expression of GPCR-related genes in 
LUAD based on bulk data and single-cell data from 
multiple datasets to establish and validate the 
signature of G protein-coupled receptor-related genes 
for the prediction of lung adenocarcinoma. A series of 
multi-omics systematic studies were also performed 
to better understand the molecular functions of 
GPCRs in this deadly malignancy. Our analysis 
suggests that GPCRRS is a prognostic model with 
good predictive efficacy. 

Research design 
In this study, we investigated the characteri-

zation of G protein-coupled receptors (GPCRs) at a 
multi-omics level. We used single-cell and bulk data 
to identify GPCR-related genes, and then constructed 
a consistent G protein-coupled receptor-related 
signature (GPCRRS) using a novel machine learning 
framework that combines multiple machine learning 
algorithms and their combinations. To facilitate the 
application of GPCRRS, we evaluated whether 
GPCRRS could predict the occurrence, development 
and metastasis of LUAD. In addition, we constructed 
a GPCRRS nomogram to provide a quantitative tool 
for predicting the prognosis of each patient in clinical 
practice. The mechanisms of GPCRs were 
investigated at the bulk transcriptome, genome, and 
single-cell transcriptome levels, revealing that GPCRs 
are closely associated with the prognosis and immune 
status of LUAD. We further investigated the sensi-
tivity of different risk subgroups to chemotherapeutic 
agents, including tyrosinase inhibitors, PARP 
inhibitors (ABT.888) and all-trans retinoic acid 
(ATRA). Our aim was to treat patients with lung 
adenocarcinoma. Figure 1 provides a flowchart of our 
work. 

Materials and methods  
Data collection and processing 

The analysis involved patients from two LUAD 
cohorts (GSE31210, GSE50081) and TCGA-LUAD. 
Patients without survival information and RNA 
sequencing (RNA-seq) data were excluded from the 
analysis. We used TPM data from TCGA for 
subsequent analysis. Construction of relevant 
prognostic features using 496 LUAD cases from the 
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TCGA database, and the sample inclusion criteria for 
TCGA were 01A (Primary Tumor) type samples 
containing complete survival information. The 
training cohort was LUAD patients from TCGA, and 
the LUAD cohorts from the GEO dataset (GSE31210, 
GSE50081) represented the validation cohort for this 
study. In this case we used GSE31210 as the first 
validation set, which contains all tumour samples, 
and sample inclusion criteria for the GSE50081 
integration cohort were samples with the histologic 
type of adenocarcinoma. To investigate the validity of 
prognostic features in predicting patient response to 
immunotherapy, we included the IMvigor210 cohort, 
which also included patients from the melanoma 
cohort from GSE78220 using the R package 
IMvigor210CoreBiologies[23]. Additionally to 
identify genes associated with GPCRs, we 
downloaded relevant data from the MSigDB database 
(http://www.gsea-msigdb.org/gsea/msigdb/index.j
sp)[24] (Supplementary Table 1). 

Single-cell RNA-seq analysis data collection 
and processing 

We collected single-cell RNA sequencing data 
from LUAD patients from the GSE149655 dataset. We 
used the "Seurat" software package[25]. We analyzed 
the single-cell sequencing data. The data were first 
quality controlled (QC) by retaining cells with less 
than 10% mitochondrial genes and at least 3 cells 
expressing genes in the range of 200 - 8000. We 

identified highly variable genes for subsequent 
analysis with a variable gene count of 2000. We 
constructed clusters of cells using the "FindClusters" 
and "FindNeighbors" functions and visualized them 
using the "t-SNE" method. visualization. Finally, we 
annotate each cell cluster. 

To elucidate the enrichment fraction of each cell 
in the scRNA-seq dataset, we used the "AUCell" 
package[26]. We used the "FindMarkers" function in 
the Seurat package to analyze the differentially 
expressed genes (DEGs) between the two groups, in 
which the statistical significance of the differentially 
expressed genes (DEGs) was calculated using the 
Wilcoxon test (p. adj < 0.05). Genes differentially 
expressed between cells with high and low GPCRs 
scores at the single-cell transcriptome level were 
considered to be involved in GPCRs. these genes were 
subsequently included in the bulk transcriptome data 
of WGCNA for analysis. We also used the R package 
"CellChat"[27] to perform cell-to-cell communication 
analysis. 

Gene set variation analysis, Single-sample 
gene set enrichment analysis (ssGSEA) and 
gene set enrichment analysis (GSEA) 

ssGSEA is a widely used method to quantify the 
enrichment score for a specific set of genes in a single 
sample. The ssGSEA score for each sample reflects the 
extent to which a particular gene set is systematically 
up- or down-regulated in the sample. In this study, 

 
Figure 1. Flowchart of this study. 
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we utilized the R package "GSVA"[28] in ssGSEA to 
obtain GPCRs scores for each TCGA-LUAD sample. 
In addition, to identify potential pathways associated 
with the feature, we used the "limma" package[29]. 
We analyzed the pathways with significant 
differences between high- and low-risk groups and 
calculated GSVA scores for 50 signature pathways. To 
reveal the biological processes (BP), cellular 
components (CC) and molecular functions (MF) 
involved in different risk subgroups, we used the R 
package "clusterProfiler"[30]. which analyzed the 
KEGG and HALLMARK gene sets between the two 
risk subgroups using the criteria of FDR < 0.25 and 
|NES|> 1, for Gene Set Enrichment Analysis (GSEA). 

Identification of G protein-coupled 
receptor-related signature genes using 
WGCNA 

WGCNA analysis is a systematic biological 
approach that can characterize patterns of genetic 
associations between different samples and has the 
ability to identify highly covariant sets of genes. In 
our study, we used the R package "WGCNA"[31] that 
performs WGCNA analysis based on TCGA-LUAD 
bulk RNA-seq data. Initially, a suitable soft threshold 
β is calculated to fulfill the criteria for constructing 
scale-free networks. Then, we converted the weighted 
neighbor-joining matrix to topological overlap matrix 
(TOM) and calculated the dissimilarity (dissTOM). 
For gene clustering and module identification, we 
applied the dynamic tree-cutting method. Finally, the 
modules with the highest correlation with GPCRs 
were identified for subsequent analysis. 

Machine learning to build prognostic models 
In the TCGA-LUAD bulk RNA-seq data, we 

used the R package DESeq2[32] for differential 
analysis of normal and tumor samples (|logFC|> 1 
and p.adj < 0.05). We then crossed DEGs at the bulk 
RNA-seq level with genes in the GPCRs-associated 
modules identified by WGCNA. These crossover 
genes were considered to be involved in G 
protein-coupled receptors at both the bulk and 
single-cell transcriptome levels, and therefore, we 
termed them G protein-coupled receptor-related 
genes (GPCR-related genes). 

G protein-coupled receptor-related signatures 
First, we applied one-way Cox regression 

analysis to screen GPCRs-related genes with potential 
prognostic role in the TCGA cohort. The TCGA cohort 
was considered as the training set, while the 
GSE31210 and GSE50081 cohorts were set as the 
external validation set. Lasso, Ridge,stepwise Cox, 
CoxBoost, random survival forest (RSF), elastic net 

(Enet), partial least squares regression for Cox 
(plsRcox), supervised principal components 
(SuperPC), generalized boosted regression modeling 
(GBM) and survival support vector machine 
(survival-SVM). and other 10 machine learning 
algorithms. We arranged multiple machine learning 
combinations of these 10 algorithms in the TCGA 
queue for variable selection and model construction 
based on the tenfold cross-validation framework. All 
constructed models are validated on the TCGA 
training set and the GSE31210 and GSE50081 datasets. 
For each model, we calculate its C-index from the 
training and validation sets. We then ranked the 
predictive performance of the models based on the 
average C-index. We selected the combination of 
algorithms with robust performance and clinical 
translational significance. As a result, we built a final 
signature that predicts the overall survival of LUAD 
patients, called the G protein-coupled receptor-related 
signature (GPCRRS). 

Survival analysis and construction of a 
predictive nomogram 

In this study, TCGA-LUAD, GSE31210 and 
GSE50081 groups were categorized into high and low 
risk groups using the median risk score. 
Subsequently, we performed KM survival curve 
analysis using the R software package "survminer" to 
investigate whether there were significant differences 
in overall survival (OS), progression-free survival 
(PFS), and disease-specific survival (DSS) between the 
high- and low-risk groups (log-rank test, p < 0.05). In 
addition, we performed ROC curve analysis using the 
"timeROC" software package to assess the sensitivity 
and specificity of GPCRRS in predicting OS in LUAD 
patients[33]. We also compared the sensitivity and 
specificity of GPCRRS in predicting OS in LUAD 
patients. We also compared the area under the curve 
(AUC) of GPCRRS with other clinical characteristics. 
In addition, we explored the correlation between 
GPCRRS and clinical characteristics such as age, 
gender, staging, T, M, and N. We performed 
univariate and multivariate Cox regression analyses 
on the TCGA-LUAD, GSE31210, and GSE50081 
datasets to determine whether GPCRRS was an 
independent prognostic factor predicting survival in 
patients with LUAD. To improve the prognostic 
accuracy and predictive power of our model, we 
developed a nomogram combining GPCRRS and 
clinical characteristics of expected survival of LUAD 
patients. Finally, we assessed the precision 
discrimination and accuracy of the nomogram using 
ROC curves, C-indexes, and calibration curves, and 
assessed the net clinical benefit of the nomogram 
using decision curve analysis (DCA). 
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Mutation and drug susceptibility analysis 
Generation of Mutation Annotation Format 

(MAF) in the TCGA database using the R package 
"maftools" to map somatic mutations in LUAD in the 
low-risk and high-risk groups[34]. Tumor mutation 
burden (TMB) was also calculated for each LUAD 
patient in the TCGA cohort. Drug sensitivity analysis 
was performed using the R package 
"pRROphetic"[35]. The R package "pRROphetic" was 
used for drug sensitivity analysis. A council plot was 
developed using the HIPLOT website (https:// 
hiplot.com.cn/) to demonstrate drug sensitivity in 
low- and high-risk populations. 

TME landscape analyses 
Enrichment scores for infiltrating immune cells 

and immune function were calculated and compared 
using single sample gene set enrichment analysis 
(ssGSEA)[23, 36]. The ESTIMATE algorithm was used 
to calculate immune scores, ESTIMATE scores and 
stromal scores between the two groups[37]. TIDE 
score data were obtained from the TIDE website 
(http://tide.dfci.harvard.edu/). 

Immunotherapy datasets and TCIA 
Anti-PD-1 or anti-PD-L1 checkpoint inhibition 

therapies are receiving increasing attention as an 
important component of immunotherapy. To assess 
the performance of risk profiles in predicting response 
to immunotherapy (immune checkpoint blockade), 
we collected transcriptomic data from the IMvigor210 
cohort of patients treated with anti-PD-L1 therapy as 
well as corresponding clinical data. We also 
downloaded transcriptomic data from the GSE78220 
cohort, which included melanoma patients who 
received anti-PD-1 checkpoint inhibition therapy 
prior to treatment. 

To determine immunogenicity based on 
immunomodulators, immunosuppressive cells, MHC 
molecules, and effector cells, we used the 
Immunophenoscore (IPS) algorithm, which calculates 
IPS scores based on unbiased gene expression of 
representative cell types using a machine learning 
approach. Higher IPS scores indicate a better response 
to immunotherapy. IPS scores of TCGA-LUAD 
patient samples were obtained from The Cancer 
Immunome Atlas (TCIA) database (https://tcia. 
at//home). Immunotherapy response was then 
predicted using the SubMap online tool[38]. 

Cell line culture and qRT-PCR 
All cells were cultured at 37°C in an incubator 

with 5% CO2 atmosphere. Normal human liver cell 
line 2B, lung adenocarcinoma cells H1299 and A549 
were obtained from the Chinese Academy of Sciences 

(Shanghai, China). Cell culture media, plates and 
dishes were from Thermo Fisher Scientific 
(Invitrogen, USA) and Corning Inc. 2B cells, H1299 
cells and A549 cells were detached and inoculated 
into 60 mm dishes overnight at an initial density of 1 
× 106 cells/well. Subsequently, SYBR Green qPCR 
mix (Vazyme, China) was used to synthesize cDNA 
for real-time PCR. Our results were analyzed using 
the comparative Ct method and the Ct values of each 
gene were normalized by the Ct reads of the 
corresponding GAPDH. All data are expressed as 
mean ± standard deviation (SD) of three independent 
experiments, and primer sequences are shown 
(Supplementary Table 2). 

Statistical analysis 
The statistical analysis of this study was 

performed using R4.0.1 software. For quantitative 
data, the statistical significance of normally 
distributed variables was estimated by the Student's t 
test, and non-normally distributed variables were 
analyzed using the Wilcoxon software. Comparisons 
between more than two groups were made using the 
Kruskal-Wallis test and oneway analysis of variance 
as non-parametric and parametric methods, respect-
ively. Kaplan-Meier survival analysis was performed 
with the R package "Survminer". Statistical 
significance was set as P< 0.05. RT-qPCR results were 
analyzed using a Student's t test. Unless otherwise 
stated, statistical significance was set at p<0.05.  

Results 
G protein-coupled receptor characterization 
of the single-cell transcriptome 

We obtained data from 2 normal and 2 LUAD 
patients from the GSE149655 single-cell dataset, and a 
total of 8954 cells were obtained from the scRNA-seq 
data after initial screening. The first 2000 variant 
genes were then subjected to principal component 
analysis (PCA) and t-distribution random neighbor 
embedding (t-SNE) downscaling. Clustering was then 
performed to aggregate all cells into 15 clusters with a 
resolution of 0.8. Cells were then annotated and 
labeled into seven major clusters, namely endothelial 
cells, CD8+ T cells, epithelial cells, macrophages, 
monocytes, B cells and fibroblasts (Figure 2A). 
Volcano and heat maps showed the top five labeled 
genes for each cell cluster (Figure 2B, C). 

To assess G protein-coupled receptors (GPCRs) 
activity in different cell types, we used the AUcell R 
package to calculate the expression levels associated 
with GPCRs in all cells (Figure 2D). Among these 
seven cell types, we observed significantly elevated 
GPCRs activity in endothelial cells (Figure 2E, F). 
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Based on the GPCRs activity, we classified the cells 
into high and low GPCRs groups and identified 
differentially - expressed genes (DEGs) between the 
two groups for further analysis (Supplementary 
Table 3). 

Identification and key genes of G 
protein-coupled receptors in bulk RNA-seq 

In this study, we used ssGSEA to score G 
protein-coupled receptors (GPCRs) for each TCGA 
cohort sample as clinical phenotypic data for 
WGCNA analysis. To identify genes associated with 
G protein-coupled receptors, we performed WGCNA 
on differential genes derived from from the single-cell 
dataset to identify genes associated with G 
protein-coupled receptors (Figure 3A). To ensure that 
the topological network was scale-free, the optimal 
soft threshold for power was chosen = 4 
(Supplementary Figure. 1A). A total of 5 modules 
were obtained by setting the minimum module gene 
count to 60 and medissres to 0.25 (Figure 3B). 

The results showed that the MEturquoise 
module was strongly correlated with the GPCRs score 
in bulk-RNA-seq (cor = 0.86, Figure 3C). In addition, 
the scatter plot of gene significance (GS) versus 
module membership (MM) of the turquoise module 
showed a significant correlation (cor = 0.95, p = 

1e-200, Figure 3D), suggesting that the genes in the 
turquoise module may have functional significance in 
relation to G protein-coupled receptors. 

The volcano plot (Figure 3E) shows the 
differentially expressed genes (DEGs) between tumor 
and normal lung tissues in TCGA-LUAD bulk 
RNA-seq (|logFC|> 1 and p.d adj < 0.05). We crossed 
the genes in the blue module with DEGs from 
TCGA-LUAD-bulk RNA-seq and finally identified 
475 genes (Figure 3F). These genes were considered G 
protein-coupled receptor-related genes (GPCRR 
genes), which were involved in GPCRs at the 
bulk-RNA-seq and single-RNA-seq levels. GO and 
KEGG enrichment for GPCRR genes analysis (Figure 
3G) showed that GPCRs genes in KEGG analysis, 
including adhesion, cell adhesion molecules, 
transcriptional dysregulation in cancer, transendo-
thelial migration of leukocytes, TNF signaling 
pathway, and molecular functions (MFs), such as 
cytokine receptor binding, cytokine binding, and 
transmembrane receptor protein kinase activity, as 
well as cellular components (CCs), including 
collagen-containing extracellular matrix were 
significantly enriched, as well as biological processes 
(BP) such as cell migration, regulation of vascular 
system development and cell-substrate adhesion. 

 
 

 
Figure 2. G protein-coupled receptor characterization of the single-cell transcriptome. A: t-SNE plot showing cell types identified by marker genes. B: volcano plot 
showing the 5 most important marker genes in each cell cluster. C: heat map showing the 5 most important genes in each cell. D: G protein-coupled receptor (GPCR) scores for 
each cell. E: Distribution of high and low groupings of GPCR scores across cell types. F: violin plot showing GPCR scores in each cell 
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Figure 3. Identification of G protein-coupled receptor-related genes (GPCRRgenes). A: Dendrogram showing hierarchical clustering of TCGA-LUAD samples. The 
heatmap at the bottom indicates the GPCR score of each sample, calculated by the ssGSEA algorithm. B: Clustering dendrogram for WGCNA analysis. C: Module-trait heatmap 
showing that the MEturquoise module is strongly associated with the GPCR trait. D: Gene significance (GS) in the turquoise module versus module affiliation (module 
membership, MM) relationship scatterplot. E: Volcano plot showing the results of differential analysis of TCGA-LUAD tumor samples versus normal samples, specifically marking 
the top 5 genes that were up or down regulated. F: Venn plot showing the crossover between MEturquoise modules and DEGs in bulk-RNA-seq genes. G: GO and KEGG 
enrichment of GPCRRgenes. 

 
Figure 4. Machine learning to build prognostic models. A: Multiple machine learning is utilized through a ten-fold cross-validation framework and the C-index is further 
calculated for each model on all validation datasets. B, C: Visualization of LASSO regression in the TCGA-LUAD cohort. D: Stepwise Cox regression to obtain the regression 
coefficients for 10 genes. E: Forest plot showing the results of stepwise Cox regression. F: Distribution of risk scores and overall survival status of patients in the TCGA-LUAD 
cohort.G-I: Based on the log-rank test, the Kaplan-Meier curve of OS was obtained based on the GPCRRS in the TCGA training and external validation sets, GSE31210 and 
GSE50081. 

 

Machine learning to build prognostic models 
Next, we performed one-way regression analysis 

(p < 0.01) on 475 GPCRR genes and found 62 genes. 
To further validate and construct the model, we 
cross-checked the TCGA-LUAD dataset with 

GSE31210 and GSE50081 and obtained 59 common 
genes. To construct a consistent G protein-coupled 
receptor-related signature (GPCRRS), we utilized 
multiple machine learning algorithms to analyze the 
59 prognostic genes obtained from univariate Cox 
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regression analysis. The TCGA-LUAD dataset was 
used as the training set. In the training set, we fitted 
multiple prediction models with a ten-fold 
cross-validation framework and calculated the 
C-index for all training and validation sets (Figure 
4A). 

Among multiple machine learning models, we 
choose the prediction model with the first ranked 
average C-index, while it shows good prediction 
ability in the training set validation and external 
validation set. We therefore choose Lasso + StepCox 
[both] (Figure 4A). As a result of the comprehensive 
screening, we found Lasso + StepCox[both] to be a 
predictive model with high accuracy. Using a tenfold 
cross-validation framework, by minimizing the 
partial likelihood bias (Figure 4B, C), we identified 
the optimal λ value in the LASSO analysis (Figure 4B, 
C). Genes with nonzero coefficients in the LASSO 
analysis were then analyzed by stepwise Cox 
proportional risk regression [both], and 10 genes were 
finally identified (Figure 4E). Subsequently, we 
calculated the risk score for each patient by weighting 
the expression of the 10 genes with the regression 

coefficients in the Cox model (Figure 4D), which 
allowed us to categorize all the patients into high-risk 
and low-risk groups based on the median risk score. 
Notably, the number of patients experiencing death 
increased progressively as the risk score increased 
(Figure 4F). Moreover, the datasets in the training set 
and external validation set showed that the overall 
survival (OS) of patients in the high-risk group was 
significantly lower than that of the low-risk group (p 
< 0.001, log-rank test; Figure 4G-I). 

Development and validation of a risk model 
The ROC curve analysis showed that the area 

under the curve (AUC) of GPCRRS was 0.758, 0.740, 
and 0.700 for the 1-, 3-, and 5-years training sets, 
respectively; 0.905, 0.802, and 0.840 for the external 
GSE31210 validation set; and 0.704, 0.708, and 0.679 
for the GSE50081 dataset (Figure 5A-C). These results 
indicate that GPCRRS has a strong discriminatory 
ability. In addition, we compared the AUC of 
GPCRRS with other clinical features (including age, 
gender, T, N, M, and total stage), and the results 
showed that the AUC of GPCRRS was significantly 

 

 
Figure 5. Development and validation of a risk model. Evaluation of the GPCRRS model. A-C: ROC curves showing the specificity and sensitivity of GPCRRS in 
predicting 1-, 3-, and 5-years OS in the TCGA training set (A), GSE31210 external validation set (B), and GSE50081. D: Correlation of GPCRRS low-risk and high-risk groups with 
clinical features. E: Distribution of clinical features and modeled gene expression according to GPCRRS risk scores. F: Differences in risk scores of staged, T, N, and M patients. 
G: Proportion of N stage in GPCRRS risk subgroups. H-K: Kaplan-Meier curves showing that GPCRRS was stable in the subgroup of LUAD patients. Stable performance in the 
subgroup of LUAD patients, including age and stage. 
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better than other clinical features (Supplementary 
Figure 1B). In addition, we assessed the correlation 
between GPCRRS and various clinical features. In the 
TCGA-LUAD dataset, we observed significant 
differences in staging, T and N staging between the 
high- and low-risk groups (P<0.05, chi-square test) 
(Figure 5E, F). In addition, we noticed that the risk 
scores of patients with stage III+IV, T3+4 and N1+2+3 
were significantly higher than those of patients with 
stage I-II, T1+2 and N0 (P<0.05, Wilcox test). Lymph 
node metastasis is prone to malignant progression of 
lung adenocarcinoma, and lymph node metastasis is 
closely related to N stage. We found a significant 
difference in the proportion of N stage in different risk 
groups (Figure 5G). By KM curve analysis, we also 
found that GPCRRS showed good prognostic ability 
in subgroups with different clinical characteristics 
(including age, gender, grading, T, N, and M) (Figure 
5H-K, Supplementary Figure 1C-F). As shown in 
Table 1, GPCRRS was also significantly associated 
with T, N staging and tumor stage. These results 
suggest that GPCRRS is associated with poor 
prognosis in LUAD patients. 

 

Table 1. Correlation between high and low risk groups and 
clinicopathologic characteristics of lung adenocarcinoma patients. 

Characteristics High (N=248) Low (N=248) P-value 
Age    
 <=65 123 (49.6%) 113 (45.6%)  0.414 
 >65 120 (48.4%) 130 (52.4%)  
Unknown 5 (2.0%) 5 (2.0%)  
Gender    
Male 127 (51.2%) 140 (56.5%) 0.28 
Female 121 (48.8%) 108 (43.5%)  
Stage    
I 109 (44.0%) 157 (63.3%) 5.6e-05 
II 70 (28.2%) 48 (19.4%)  
III 53 (21.4%) 26 (10.5%)  
IV 14 (5.6%) 11 (4.4%)  
Unknown 2 (0.8%) 6 (2.4%)  
T stage    
T1 64 (25.8%) 101 (40.7%) 0.003 
T2 144 (58.1%) 122 (49.2%)  
T3 28 (11.3%) 16 (6.5%)  
T4 11 (4.4%) 7 (2.8%)  
Unknown 1 (0.4%) 2 (0.8%)  
N stage    
N0 140 (56.5%) 181 (73.0%) 0.00045 
N1 57 (23.0%) 37 (14.9%)  
N2 46 (18.5%) 22 (8.9%)  
N3 1 (0.4%) 1 (0.4%)  
Unknown 4 (1.6%) 7 (2.8%)  
M stage    
M0 167 (67.3%) 162 (65.3%) 0.613 
M1 14 (5.6%) 10 (4.0%)  
Unknown 67 (27.0%) 76 (30.6%)  

 

Survival analysis and construction of a 
predictive nomogram 

To assess whether GPCRRS was an independent 
prognostic factor for LUAD, we performed univariate 

and multivariate Cox regression analyses for OS, PFS, 
and DSS in the TCGA-LUAD dataset (Figure 6A-C). 
Our findings showed that GPCRRS was a significant 
risk factor for OS, PFS and DSS in univariate analysis 
(HR > 1, p < 0.001). Furthermore, in multifactorial 
analysis showed that GPCRRS remained a significant 
risk factor for OS (HR=2.48, CI:1.869-3.29 p < 0.001), 
PFS (HR=1.998, CI:1.58-2.527, p < 0.001) and DSS 
(HR=2.658, CI: 1.854-3.811, p < 0.001) independent 
prognostic factors, suggesting a strong prognostic 
ability in LUAD patients (Figure 6D-F). 

To validate the predictive role of GPCRRS in the 
clinical setting, we constructed a nomogram based on 
GPCRRS and clinical features (Figure 6G). The 
calibration curves showed good agreement between 
the nomogram predictions and the actual 
observations (Figure 6H). Decision curve analysis 
(DCA) showed better predictive efficacy of the 
nomogram compared with other clinical features 
(Figure 6I). TimeROC analysis in the TCGA cohort 
confirmed that the AUCs of the column line graph 
and risk scores exceeded those of other metrics 
(Figure 6J). These results suggest that the nomogram 
diagnostic method based on GPCRRS provides a 
reliable and accurate tool for personalized prognostic 
prediction in LUAD patients. 

Pathway enrichment analysis of G 
protein-coupled receptors in bulk 
transcriptome 

To further investigate the molecular mechanisms 
underlying the association between GPCRRS and 
LUAD prognosis, we performed gene set enrichment 
analysis. In the GSEA analysis based on the 
REACOME gene set, we observed that the high-risk 
group was enriched in the positive regulation of 
TCF_DEPENDENT_SIGNALING_IN_RESPONSE_T
O_WNT, TNFA SIGNALING_VIA_NFKB, and 
E2F_TARGETS (Figure 7A), while the low-risk group 
was enriched in the positive regulation of the 
REACOME gene set based on the 
c2.cp.kegg.v2023.1.Hs.symbols gene set was mainly 
enriched with the positive regulation of 
KEGG-AUTOIMMUNE-THYROID-DISEASE, 
KEGG-ASTHMA and KEGG-ARACHIDONIC-ACID- 
METABOLISM (Figure 7B). GSVA enrichment 
Analysis based on the HALLMARK gene set 
demonstrating differential pathways between the two 
revealed that the high-risk group was mainly highly 
expressed in E2F-TARGETS, G2M-CHECKPOINT, 
TNFA_SIGNALING_VIA_NFKB, and MYC_ 
TARGETS_V2, which may imply that the high-risk 
group was oncogenic through these pathways; the 
low-risk group was mainly expressed in the 
BILE_ACID_METABO-LISM, FATTY_ACID_ 
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METABOLISM showed higher activity (Figure 7C, 
D). GO and KEGG enrichment analyses demonstrated 
the enrichment analysis of the two differential genes, 
GO was mainly enriched for DNA replication, 
collagen- containing extracellular matrix, cell 
adhesion mediator activity; KEGG enrichment 
analysis demonstrated ECM-receptor interaction, 
Fatty acid degradation, Apoptosis, etc. (Figure 7E, F). 
This suggests that GPCRRS is closely associated with 
cancer-related biological processes and metabolic 
pathways. 

Tumor mutation analysis in bulk RNA-seq 
To investigate the correlation between risk scores 

and TMB, Spearman correlation analysis was 
performed in this study, and a significant positive 
correlation was found between risk scores and TMB 
(R = 0.24, P< 0.001, Figure 8A). Patients in the 
high-risk group had higher TMB levels than those in 
the low-risk group (Figure 8B). In addition to 
investigate the differences in genomic mutations 
between GPCRRS subgroups, we depicted a waterfall 
plot between the high-risk and low-risk groups, and 

we found distinct mutation profiles between the two 
risk groups. (Figure 8C, D). In addition, we analyzed 
the correlation of the top 20 mutations between the 
two groups (Figure 8E, F). Subsequently, we 
investigated the mutation frequencies of the 10 major 
oncogenic pathways in the two risk subtypes. Our 
results showed that most of the oncogenic mutation 
pathways were detected in the high-risk types, 
including RTK-RAS, WNT, NOTCH, MYC and TP53 
pathways (Figure 8G, H). 

Characterization of G protein-coupled 
receptors in single cells 

To investigate the role of GPCRRS in the tumor 
microenvironment (TME) at the single-cell 
transcriptome level, we analyzed the expression 
patterns of CCL20, DDIT4, GPX3, BEX5, AKAP12, 
DSG2, SERPINH1, LDHA, DNAJB4, and DOCK4 in 
different cell types (Figure 9A). The results showed 
that these genes were mainly expressed in immune 
cells such as macrophages, endothelial cells and 
fibroblasts (Figure 9B). 

 
 

 
Figure 6. Survival analysis and construction of a predictive nomogram. A-F: Univariate and multivariate analyses of clinical characteristics and GPCRRS for OS (A, B), 
PFS (C, D), and DSS (E, F) in the TCGA-LUAD cohort. G: Construction of a nomogram according to the GPCRRS and clinical characteristics to construct nomograms including 
age, gender, stage, T, N, M. H: Column line graph calibration curves for 1, 3 and 5 years OS. I: Decision curve analysis (DCA) to show the net benefit by applying the nomogram 
and other clinical characteristics. J: Assessment of the predictive power of the column line graphs and clinicopathological characteristics by TIME-ROC analysis. 
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Figure 7. Pathway enrichment analysis of G protein-coupled receptors in bulk transcriptome. A: Ridge diagram showing pathway analysis of high-risk group; B: 
GSEA analysis showing KEGG term enrichment in low-risk group; C: Difference in HALLMARK pathway activity between high- and low-risk of GSVA score; D: Correlation 
between risk score and HALLMARK pathway activity of GSVA score. E: Correlation between G pathway activity of high- and low-risk differential genes; F: KEGG enrichment 
analysis of high and low risk differential genes. 

 
Next, we investigated the role of intercellular 

communication, and we found that fibroblasts 
dominated the communication component (Figure 
9C, D). In addition, we studied their interactions with 
other cell types in the TME. We found that different 
immune cells have different communication patterns 
(Figure 9E-J). different types of cells in the TME can 
play the roles of senders, receivers, mediators, and 
influencers in cellular communication, leading to the 

generation of specific signals between cells. The 
results showed that fibroblasts, macrophages, and 
endothelial cells communicate with more types of 
TME cells and play stronger roles as mediators and 
influencers in the APP signaling pathway, CXCL 
signaling pathway, and MHC-II signaling pathway. 
These signaling pathways can regulate adhesion, 
differentiation, and metastasis and influence cancer 
cell survival[39, 40] (Figure 9H-M). 
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Figure 8. Tumor mutation analysis. A: Risk score and TMB correlation analysis. B: Difference in TMB between low-risk and high-risk groups. C-D: Mutation waterfall map 
between two groups, (C) high-risk group; (D) low-risk group. E-F: Correlation of the first 20 mutated genes between two groups, (E) high-risk group, (F) low-risk group; G-H: 
Pathways regulated by mutated genes in different risk groups, (G) high-risk group, (H) low-risk group. 

 

 
Figure 9. Characterization of G protein-coupled receptors in single cells. A: CCL20, DDIT4, GPX3, BEX5, AKAP12, DSG2, SERPINH1, LDHA were analyzed by single 
cell RNA-seq, DNAJB4 and DOCK4 expression in different cell types. B: Violin plots of CCL20, DDIT4, GPX3, BEX5, AKAP12, DSG2, SERPINH1, LDHA, DNAJB4, and DOCK4 
genes demonstrating. C: Quantitative intercellular communication; D: Intense intercellular communication. E-F: Circos plots showing APP (H), CXCL (I), and MHC-II (J) signaling 
pathway networks; H-J: heatmaps showing the roles played by different cell types in the pathway networks. 
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Figure 10. Immunoscape and immunologic properties of G protein-coupled receptors. A: Immunoscore, ESTIMATE score and stromal score were applied to 
determine the different immune status between the high and low risk groups; B: The activity of immune-related pathways was significantly different between the high risk and the 
significant differences between high and low risk groups. C: Immunotherapy escape status was assessed using TIDE in high and low risk groups; D, E: The abundance of infiltrating 
cell types between each risk group was quantified by the CIBESORT algorithm (D) and the ssGSEA algorithm (E) between the high and low risk groups. F: Correlation of immune 
infiltrating cells with the GPCRRS gene. G: The expression of immune checkpoints in high- and low-risk groups. 

 

Immunoscape and immunologic properties of 
G protein-coupled receptors 

To assess the immune infiltration status of the 
LUAD samples, we used the ESTIMATE algorithm to 
calculate the immunization score, stromal score, and 
ESTIMATE score for the GPCRRS risk group. The 
results showed that the immune score was 
significantly higher in the low-risk group (Figure 
10A). In addition, using the ssGSEA algorithm, 
immune-related pathway scores were obtained in this 
study. The low-risk group showed greater activity in 
HLA, TIL and Type II IFN Respone (Figure 10B). In 
addition, we estimated the TIDE score between the 
two groups using the TIDE online website and found 
that the TIDE score was significantly higher among 
the high-risk group, suggesting that the high-risk 
group may have stronger immunotherapy escape 
(Figure 10C). To further analyze the differences in 
specific immune cell infiltration between the high- 
and low-risk groups, we quantified the abundance of 
immune cell infiltration in each sample using the 

CIBERSORT algorithm (Figure 10D). We found that 
M0 macrophages and M1 macrophages were more 
abundant in the high-risk group. Whereas B cells 
Memory, Monocytes, T cells CD4 memory resting and 
mast cell resting, were more abundant in the low-risk 
group. Similar results were obtained by applying the 
ssGSEA algorithm for validation (Figure 10E). In 
addition, we found that 10 genes within GPCRRS 
were strongly correlated with immune scores and 
highly correlated with tumor-infiltrating immune 
cells, among which CCL20 was positively correlated 
with mast cells activated and T cells CD4 memory 
activated, and GPX3 and DOCK4 were positively 
correlated with M2 macrophages (Figure 10F). In 
addition, of the 47 immune checkpoint-associated 
genes obtained from the literature[41] the expression 
of 23 checkpoint-associated genes (48.94%) differed 
significantly between molecular subtypes (Figure 
10G). The expression of most of these genes was 
significantly higher in the Low group than in the High 
group, suggesting that patients of different subtypes 
may respond differently to immunotherapy. 
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Figure 11. Relationship between G protein-coupled receptors and immunotherapy. A:CTLA4-negative/PD-1-negative;B:CTLA4-negative/PD-1-positive; 
C:CTLA4-positive/PD-1-negative; D: CTLA4-positive/ PD-1 positive; E: SubMap tool analysis showed that high and low risk groups predicted response to anti-PD-1 therapy. 
Obtained p-values were adjusted by the Bonferroni method. F: Prognostic differences between risk subgroups in the IMvigor210 cohort. G: Differences between immunotherapy 
responses based on risk scores in the IMvigor210 cohort. H: Distributions of immunotherapy responses based on risk subgroups in the IMvigor210 cohort. I: Distribution of 
immunotherapy responses based on early-stage (I-II) and early-stage (I-II) in the IMvigor210 cohort. Difference in prognosis between risk subgroups based on early stage (stage 
I-II) in the IMvigor210 cohort. J: Difference in prognosis between risk subgroups based on late-stage patients (stage III-IV) in the IMvigor210 cohort. K: Difference in prognosis 
between risk subgroups in the GSE78220 cohort. L: Distribution of immunotherapy responses based on risk subgroups in the GSE78220 cohort. (**P < 0.01; ***P < 0.001; ****P 
< 0.0001). 

 

Relationship between G protein-coupled 
receptors and immunotherapy 

After assessing the immune infiltration, to 
further investigate the potential correlation between 
GPCRRS and immunotherapy, IPS was used to assess 
the therapeutic efficacy of immune checkpoint 
inhibitors, which showed that the efficacy of the 
low-risk group was significantly better than that of 
the high-risk group, regardless of the status of 
CTLA-4 and PD-1 (Figure 11A-D). We performed 
SubMap analysis to assess the anti-PD-1 
immunotherapy response in the high- and low-risk 
group immunotherapy. The results showed that the 
low-risk group predicted partial and complete 
response (PR/CR) to anti-PD-1 immunotherapy, 
while the high-risk group predicted resistance (SD) to 
anti-PD-1 immunotherapy (Figure 11E). In addition, 
we analyzed the response to PD-L1 blockade 
immunotherapy in the IMvigor210 and GSE78220 

cohorts. 348 patients in the IMvigor210 cohort showed 
different responses to anti-PD-L1 receptor blockers, 
including stable disease (SD), partial remission (PR), 
complete remission (CR) and disease progression 
(PD). We found that CR/PR patients had lower risk 
scores than SD/PD patients (Figure 11G). In addition, 
the proportion of SD/PD patients was lower in the 
low-risk group than in the high-risk group (Figure 
11H). Our analysis of the IMvigor210 cohort showed 
that patients in the low-risk group had significantly 
better clinical outcomes than patients in the high-risk 
group (Figure 11F). In addition, we found significant 
survival differences between different risk groups not 
only in stage I+II patients but also in stage III+IV 
patients (Figure 11I, J). To confirm our findings, we 
included the GSE78220 cohort in further analysis. In 
contrast to the results obtained in IMvigor210, the 
proportion of PR/CR patients was lower in the 
high-risk group and good survival significance was 
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observed in the low-risk group (Figure 11K-L). These 
results suggest that GPCRRS can assess the efficacy of 
immunotherapy and that patients with lower risk 
scores may better benefit from immunotherapy. 

Identification of key regulators of GPCRRS 
In order to identify the key regulators in the risk 

subgroups, first we verified the mRNA expression 
levels of these 10 genes, and found that CCL20, 
DDIT4, DSG2, LDHA, and SERPINH1 were highly 
expressed in tumors, whereas GPX3, BEX5, and 
DOCK4 were highly expressed in normal tissues 
(Figure 12A). In addition, we used ROC diagnostic 

curves to screen for key regulators, and we found that 
the only ones with ROC>0.95 were GPX3, LDHA, and 
DOCK4, and thus we considered these three genes to 
be key regulators of GPCRRS (Figure 12B-D, 
Supplementary Figure 2A-G). We plotted KM curves 
to verify the survival of these three key genes, and we 
found that high expression of GPX3 and DOCK4 had 
a good prognosis, while low expression of LDHA had 
a good prognosis (Figure 12E-G, Supplementary 
Figure 3A-G). The results showed that GPX3, 
DOCK4, and LDHA were the key regulators of 
GPCRRS. 

 

 
Figure 12. Identification of key regulators of GPCRRS. A: Expression of GPCRRS gene in cancer and paracancer; B: ROC diagnostic curves of GPX3; C: ROC diagnostic 
curves of LDHA; D: ROC diagnostic curves of DOCK4; E: Survival curves of GPX3; F: LDHA survival curve; G: survival curve of DOCK4. (**P < 0.01; ***P < 0.001; ****P < 
0.0001). 
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Figure 13. Between GPCRRS and drug sensitivity regarding and validation of key genes. A-E: Comparison of GPCRRS high and low risk groups on drug sensitivity 
F: Analysis of high and low risk group population on drug sensitivity. Green, sensitivity to low-risk scoring patients; red, sensitivity to high-risk patients; blue, no significance; G-I: 
Validation of GPX3 (G), LDHA (H), and DOCK4 (I) expression by RT-qPCR in normal cell line (2B) and two LUAD cell lines (H1299 and A549). (*P < 0.05; **P < 0.01; ***P < 
0.001; ****P < 0.0001). 

 

Analysis of the correlation between the 
GPCRRS and drug sensitivity and validation of 
gene expression 

Over the past few decades, significant progress 
has been made in exploring the molecular 
mechanisms of LUAD progression, leading to the 
development of precision therapeutics such as 
tyrosine kinase inhibitors (TKIs)[42]. With the advent 
of molecular profiling, it has become clear that lung 
adenocarcinoma is a genetically heterogeneous 
disease characterized by a series of driver mutations 
and alterations suitable for targeted therapy[43]. 
However, drug resistance is a common problem due 
to the highly dynamic and heterogeneous tumor 
microenvironment[44, 45]. To this end, we examined 
the sensitivity of GPCRRS risk subgroups to two 
tyrosine kinase inhibitors and found that sunitinib 
and pazopanib were significantly elevated in the 
low-risk group (Figure 13A, B), as well as the other 
drugs, ATRA, ABT.888, and DMOG, were 
significantly elevated in the high-risk group (Figure 
13C-E), and the risk scores were differently correlated 
to the drugs (Supplementary Figure 4A-E). These 
results suggested that patients in the high-risk group 
responded better to sunitinib or pazopanib treatment, 
whereas patients in the low-risk group might be more 
sensitive to ATRA, ABT.888 and DMOG. In addition 
we further performed drug sensitivity analysis to 
predict the IC50 of 139 chemotherapeutic agents 
(Figure 13F). The results showed that 72 drugs in the 
high-risk group had low IC50 values, suggesting 
sensitivity. Patients in the low-risk group were 
sensitive to 28 drugs. In conclusion, these results 

provide a reference standard for therapeutic analysis 
of LUAD patients. 

Finally, we evaluated the expression of the three 
core genes in GPCRRS in three cell lines, including 
one normal cell line (2B) and three lung 
adenocarcinoma cell lines (A549 and H1299) (Figure 
13G-I). The results showed that GPX3 and DOCK4 
expression was significantly upregulated in normal 
cell lines, while LDHA expression was significantly 
upregulated in tumor cell lines. 

Discussion 
Lung cancer is the most common pathologic 

type, accounting for nearly 40% of all lung cancer 
subtypes, and is characterized by rapid progression, 
severe prognosis, and early relapse[46]. The prognosis 
of lung cancer is severe and early recurrence. Due to 
tumor heterogeneity and adverse events, immuno-
therapy has become an important therapeutic strategy 
for low response rates[47, 48]. The Identification of 
effective biomarkers is the key to improving the 
efficacy of immunotherapy. Currently, a variety of 
biomarkers are used to assess the response to 
immunotherapy, including tumor mutation 
burden[49], PD-1, PD-L1, CTLA-4[50], TIGIT[51, 52], 
and neoantigens[53]. However, the overall survival of 
patients with LUAD remains suboptimal, with a 
5-year survival rate of 19%[3]. In addition, even in 
early-stage LUAD patients, the recurrence rate 
remains at 30-45% within 5 years after surgery[54, 55]. 
The development of new biomarkers for LUAD 
Therefore, the development of new biomarkers, 
therapeutic targets, and drugs is essential to improve 
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the early diagnosis and outcome of LUAD patients 
with the aim of improving their survival. 

In recent years, several studies have aimed to 
establish a gene signature based on programmed cell 
death to better understand the prognostic 
classification of LUAD. For example, Wang Z et al.[56] 
reported a metabolism-related prognostic signature 
that predicted overall survival in LUAD. Similarly, 
Shi R et al.[57] developed a prognostic signature 
based on hypoxia-derived related genes to predict 
prognosis in LUAD. Gao J et al.[58] constructed a 
model related to autophagy in radiotherapy that 
performed well in predicting overall survival in 
LUAD. As well as Xu F et al.[59] constructed a 
prognostic model based on m6A-associated lncRNAs 
to validate the prognosis of LUAD, and all of these 
studies showed a certain degree of predictive ability 
for the prognosis of LUAD patients, immune 
response, etc. G protein-coupled receptors are closely 
associated with tumorigenesis and cancer survival. 
However, only a few studies have focused on G 
protein-coupled receptor-related gene-based models. 

Wang et al. screened for G protein-coupled 
receptor-related genes through immune infiltration- 
related genes[60]; Liu et al. studied the effects of G 
protein-coupled receptor antagonists on lung 
adenocarcinoma [61]; Jala VR, Li ZH, Wu G and Yao S 
et al. studied single gene of G protein coupled 
receptor[62-65]; Touge H et al. study was the effect of 
G protein coupled receptor on the morphology of 
lung adenocarcinoma cells[66]; Khan M's review type 
of study mainly talked about the relevance of GPCR 
in the treatment of lung adenocarcinoma[67]; Gao Y 
and Fujimoto J was mainly experimental and did not 
use bioinformatics on a large scale[68, 69].Our study is 
G protein-coupled receptor fully characterised and 
some of the genes have not been studied yet. 

We obtained G protein-coupled receptor related 
genes from single cell transcriptomes using scRNA- 
seq data from the GSE149655. The TCGA-LUAD data 
and the GSVA algorithm were then used to identify 
the key modules most relevant to the progression of G 
protein-coupled receptor, and differential genes were 
obtained by differential analysis of the TCGA-LUAD 
data. When we selected the intersection of G 
protein-coupled receptor marker genes and 
differential genes, we finally found 66 genes involved 
in G protein-coupled receptor both in the single-cell 
transcriptome and in the bulk transcriptome. We then 
built a new prognostic model using a combination of 
machine learning algorithms to screen for 10 genes. 
Second, we modeled LUAD patients using GPCRRS 
to analyze high and low patient responses to 
immunotherapy and sensitivity to first-line drugs, 
including tyrosine kinase inhibitors (TKIs). In 

addition, unlike previous studies, we performed a 
comprehensive multi-omics analysis including 
genome, single-cell transcriptome, and overall 
transcriptome to gain a deeper understanding of 
GPCRRS. Significant prognostic differences were 
found between the two groups, demonstrating the 
independent predictive value of the GPCR profile we 
created for LUAD.ROC curve and calibration curve 
analyses demonstrated the superior predictive 
efficacy of the GPCR profile for patient prognosis. In 
addition, the line graphs we created demonstrate in a 
promising way the superiority of the GPCR signature 
relative to other clinically used indications. 

In this study, a new computational framework is 
used to identify stable and robust prognostic features, 
GPCRRS. the framework contains 10 machine 
learning algorithms and their multiple combina-
tions[70]. Using this framework, we reduced the 
dimensionality of the variables, simplified the model, 
and successfully fitted a consensus model with high 
predictive accuracy and translatability. Through KM 
curve analysis and multivariate analysis, we 
determined that the GPCRRS could stratify the risk of 
LUAD patients according to OS, PFS, and DSS, as well 
as serve as an independent prognostic factor for these 
outcomes. In addition, the predictive accuracy of the 
GPCRRS was significantly better than other clinical 
characteristics. The stability of the prognostic 
stratification of clinical subgroups reaffirmed the 
robustness of the GPCRRS. In addition, we observed 
that GPCRRS was associated with high grading and 
late stage of LUAD, which correlates with poor 
clinical outcomes. 

Notably, our study demonstrated that GPCRRS 
not only predicts the prognosis of LUAD patients, but 
also has the potential to predict the development of 
LUAD. GPCRRS showed good diagnostic perfor-
mance on the TCGA, GSE31210, and GSE50081 
datasets. The AUCs of the prognostic models 
constructed by Wu et al. by selecting the ICD-related 
DAMP gene were 0.73,0.68 and 0.67[71]; the AUCs of 
the prognostic models constructed by Jiang et al. 
through the single-cell transcriptome and bulk 
transcriptome were 0.669,0.674 and 0.642[72]; the 
AUCs of the prognostic models constructed by Yang 
et al. through the lncRNAs-related immune gene 
constructed prognostic models with AUCs of 
0.727,0.709 and 0.675, respectively[73]. Our AUC 
results were 0.758, 0.740, and 0.700. These results 
suggest that GPCRRS has good predictive ability to 
predict the prognosis of LUAD. Therefore, risk 
stratification based on GPCRRS can be used to 
identify individuals at high risk for LUAD. For these 
patients, clinicians can develop interventions such as 
regular physical examinations, lifestyle interventions, 
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and specific preventive medications. 
To provide a convenient tool to quantify survival 

in LUAD, we constructed a nomogram survival plot 
combining GPCRRS and clinical features. the 
nomogram ROC curve was highly accurate in 
prediction, and the ROC curve and C-index were 
shown to have good discriminatory properties. The 
calibration curves further confirmed the accuracy of 
the nomogram by showing close agreement between 
predicted and observed survival. Importantly, the 
application of the nomogram resulted in a greater net 
benefit compared with other clinical features, 
suggesting that the nomogram has great potential as a 
promising and convenient clinical tool for predicting 
survival in patients with LUAD. 

G-protein-coupled receptors (GPCRs) are the 
largest family of cell surface signaling receptors 
known to play important roles in a variety of 
physiological functions, including tumor growth and 
metastasis[8]. Thus G protein-coupled receptors may 
be closely related to tumor immunotherapy and the 
immune landscape. We wanted to gain a deeper 
understanding of the immune microenvironment 
associated with GPCRs in LUAD and their role in 
immunotherapy. To accomplish our goal, we used 
several algorithms including ESTIMATE, 
CIBERSORT, ssGSEA, and others. These algorithms 
allowed us to identify immune cell infiltration in 
LUAD. Our results showed that the low-risk group 
had a highly infiltrated immune microenvironment, 
in contrast to the high-risk group, which had a less 
infiltrated immune microenvironment. In addition, 
we assessed the immunotherapy response and drug 
sensitivity between the two groups by algorithms 
such as TIDE, which provides some basis for clinical 
treatment. We further validated the ability of GPCRRS 
to predict immunotherapy response using the real 
cohort SubMap and IMvigor210. Notably, the 
proportion of complete remission/partial remission 
(CR/PR) patients was significantly higher in the 
low-risk group. In addition, CR/PR patients had 
lower risk scores than stable disease/progressive 
disease (SD/PD) patients. These findings confirm the 
ability of GPCRRS to predict response to immuno-
therapy and suggest that low-risk populations may 
derive greater benefit from immunotherapy. Our 
findings suggest that GPCRRS may serve as a 
valuable biomarker for immunotherapy in patients 
with LUAD.GPCRRS can be used to identify which 
patients with LUAD may benefit from immuno-
therapy prior to treatment initiation. 

To evaluate the predictive value of GPCRRS in 
determining the prognosis of LUAD, we initially 
selected 10 GPCRs to build a risk score model to 
predict the overall survival of LUAD patients. Later, 

we found that among these 10 genes, 3 genes had very 
good diagnostic efficacy, so we thought that these 
three genes might be the key regulators of GPCRRS. 
Interestingly, we found that previous studies reported 
that these genes play an important role in cancer 
progression: the LDHA activates GTPase Rac1 in a 
manner independent of its glycolytic enzyme activity 
thereby promoting cancer progression[74]; DOCK4 is 
a key component of the TGF-b/Smad pathway and 
promotes lung ADC cell extravasation and 
metastasis[75]; GPX3 is a potent tumor development 
suppressor[76]. Although the regulatory roles of these 
GPCRs have been studied in various cancers, few 
researchers have systematically evaluated their 
prognostic value in LUAD. Overall, we were the first 
to investigate the prognostic significance of "G 
protein-coupled receptors" in patients with LUAD 
and pioneered the development of a risk scoring 
model based on G protein-coupled receptor-related 
genes. 

However, this study still has some limitations, 
firstly we used samples from public databases and 
analyzed them, so inherent cases may affect the 
results. More convincing studies are needed to 
confirm our findings. Second, although we evaluated 
and validated the GPCRRS model in the training set 
and external validation set, large-scale, multicenter 
prospective studies are needed to further confirm our 
findings. More in vitro and in vivo studies are needed 
to elucidate the biological functions of GPCRs-related 
genes in LUAD. In conclusion, although we predicted 
that the expression and prognostic role of genes in 
GPCRRS at the protein level deserve further study. 
Future studies must explore the potential mechanisms 
between GPCRRS gene expression and LUAD 
prognosis. 

In conclusion, a G protein-coupled receptor- 
related gene-based signature was identified and 
validated to have strong properties to predict 
prognosis and immunotherapy response in LUAD 
patients. It can be used as a prognostic biomarker for 
individualized predictive clinical decision-making 
and helps to select appropriate patients who can 
benefit from immunotherapy. 
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