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Abstract 

Background: Immune cells play a critical role in the prognosis of cancer. However, the function of different 
immune cell types in lung adenocarcinoma (LUAD) and the development of a prognostic signature based on 
immune cell types have not been comprehensively investigated. 
Methods: We collected and included a total of 2499 LUAD patients and performed calculations to determine 
the penetration level of 24 immune cells. This examination was conducted using the macro-gene-based 
approach provided by ImmuCellAI. We performed a meta-analysis using Lasso-Cox analysis to establish the 
immune cell pair score (ICPS). We conducted a survival analysis to measure differences in survival across 
ICPS-risk groups. Wilcox test was used to measure the difference in expression level. Spearman correlation 
analysis was used for the relevance assessment.  
Results: We collected a total of 24 immune cell types to construct cell pairs. Utilizing 17 immune cell pairs, we 
constructed and validated the ICPS, which plays a critical role in stratifying survival and dynamically monitoring 
the effectiveness of immunotherapy. Additionally, we identified several candidate drugs that target ICPS. 
Conclusions: The ICPS shows promise as a valuable tool for identifying suitable candidates for 
immunotherapy among patients. Our comprehensive assessment of immune cell interactions in LUAD 
contributes to a deeper understanding of infiltration patterns and functions, thereby guiding the development 
of more efficacious immunotherapy strategies. 

Keywords: immune cell; immunotherapy; lung adenocarcinoma; prognosis; tumor microenvironment 

Introduction 
Throughout the world, lung cancer is one of the 

most prevalent malignant tumors that pose a 
significant risk to human health. This disease has the 
highest incidence rate as well as mortality rate. Lung 
adenocarcinoma (LUAD) is the most prevalent 
histological subtype of lung cancer, possessing unique 
biological characteristics [1-3]. Clinically, patients 
with lung adenocarcinoma often lack typical clinical 
symptoms or even have no symptoms in the early 
stage, are prone to distant metastasis, and have high 
drug resistance. These characteristics also make the 
clinical treatment of lung adenocarcinoma a great 

challenge. Recently, with the rapid development of 
medical molecular biology, the treatment of LUAD 
has gradually diversified, and its pathological 
classification is also gradually refined. Lung cancer is 
moving towards the stage of precise diagnosis and 
treatment. However, the emergence of new treatment 
modes has also brought new problems and challenges 
to the clinic. The era of precision medicine has put 
forward higher requirements for researchers and 
medical staff. 

With the deepening of research, researchers have 
gradually realized that the continuous and dynamic 
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interaction between cancer cells and the tumor 
microenvironment (TME) is the key factor in 
promoting tumor occurrence, development, and 
metastasis [4]. It is composed of several different 
types of cells and secreted factors that trigger tumor 
growth. The important biological characteristics of the 
tumor tissue microenvironment are tissue hypoxia, 
low pH, increased tissue stiffness, nutrient depriva-
tion, the formation of interstitial hypertension, and 
immune-inflammatory reactions [5, 6]. The TME can 
play an important regulatory role in tumor cell 
proliferation, survival, tumor angiogenesis, self- 
renewal of tumor stem cells, and tumor invasion and 
metastasis by providing growth factors, cell 
survival-promoting factors, extracellular matrix, and 
numerous adhesion molecules for tumor cells [7]. 
Among them, the tumor immune microenvironment, 
which is composed of macrophages, dendritic cells, 
neutrophils, B cells, T cells, tumor-associated 
fibroblasts, and secreted cytokines, constructs the 
tumor immune barrier, thereby affecting the response 
rate of immunotherapy [8]. The rapid development of 
immunotherapy has brought significant development 
opportunities for tumor therapy in recent years. 
Immune checkpoint blockers can improve anti-tumor 
immune response by regulating T cell activity, which 
has become one of the current research hotspots and 
the most promising strategies. 

In this study, we measured immune cell 
infiltration levels within each cohort of samples using 
meta-multiple LUAD cohorts. We collected 24 types 
of immune cells from ImmuCellAI and established the 
immune cell pair (ICP) to understand the complex 
interactions between immune cells realistically. 
Finally, we created and validated the immune cell 
pair score (ICPS), which showed strong predictive 
ability in predicting prognosis and evaluating the 
efficacy of immunotherapy in LUAD. 

Materials and Methods 
Data resources 

The transcriptome cohorts of LUAD were 
collected from multiple public databases including 
the Cancer Genome Atlas (TCGA) databases 
(TCGA-LUAD), and the gene expression omnibus 
(GEO) database (n=13). Besides, the immunotherapy 
data IMvigor210 was downloaded from the 
“IMvigor210CoreBiologies” R package containing 348 
samples corresponding to clinicopathological 
information [9]. GSE78220, including patients treated 
with anti-PD-1 antibody, was downloaded from the 
GEO database [10]. After surgical removal, the 
pathology was clearly diagnosed as glandular cancer, 
and the prognostic information was complete, and 

patients who were not immunotherapeutic at the time 
of sampling were included in the study. We collected 
14 LUAD cohorts [11-26] with transcriptome data and 
survival data (Table S1). The “DEseq.2” R package 
was used for the normalization and log (2+1) 
transformation of TCGA-LUAD data. The 
normalization of the IMvigor210 cohort was also 
conducted via “DEseq.2” R package. What’s more, a 
LUAD-specific, meta-entire cohort was collected after 
preprocessing, merging, and ComBat-adjusting the 14 
cohorts via the “sva” R package. The meta-entire 
cohort included a total of 2499 LUAD samples 
meeting the requirements for complete information. 

The constructed of immune cell pair score 
(ICPS) 

Firstly, the level of immune cell infiltration was 
conducted by a macro-gene-based approach from the 
ImmuCellAI (Immune Cell Abundance Identifier) [27, 
28]. We can get the infiltration degree of 24 different 
types of immune cells in each LUAD sample. Then, to 
increase the comparability between cohorts from 
different sources and further reduce the batch effect, 
the immune cell pair index (ICPI) was established. 
The ICPI was regarded as 1 when the level of immune 
cell A infiltration exceeded that of another immune 
cell. Conversely, when the level of immune cell A was 
lower than that of another immune cell, the ICPI was 
assigned as 0. In the subsequent phase of analysis, 
various ICPIs exhibiting consistent values (0 or 1) 
were excluded to alleviate potential biases stemming 
from platform-specific priority measurements. 
Additionally, the entire meta-cohort was split into 
equal-sized subsets: the meta-training cohort (n=1249) 
and the meta-testing cohort (n=1250), maintaining a 
1:1 ratio according to the random algorithm. The ICPS 
was constructed using the Lasso regression analysis 
via the “glmnet” R package in the meta-training 
cohort [29]. We calculated the coefficients for each ICP 
using the multivariate Cox proportional hazards 
model.  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖
𝑛𝑛

𝑖𝑖=1

 

Based on the above formula, we could get the 
ICPS of each LUAD sample. We employed a 
time-dependent receiver operating characteristic 
(ROC) curve analysis to effectively classify patients 
with LUAD into high- and low-risk groups via the 
"survivalROC" R package [30]. Subsequently, the 
threshold value for classification in this study was 
determined based on the ICPS value that exhibited the 
minimal deviation from the ROC curve at a specific 
point. As a result, patients with LUAD from various 
cohorts, including TCGA-LUAD, training, testing, 
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and meta-cohort, were classified into two risk groups 
according to their ICPS risk level. 

Association between ICPS and clinical features 
of LUAD patients  

To explore the prognostic significance of the 
ICPS, we utilized the "survival" R package to perform 
subsequent survival analyses. To assess the survival 
differences between high-risk and low-risk groups 
based on ICPS, we partitioned the meta-entire cohort 
into training and testing cohorts. To validate the 
prognostic role of ICPS, we also utilized the entire 
pooled cohort. The log-rank test was utilized to assess 
the significance of survival differences between the 
groups, considering P < 0.05 as statistically significant. 
In addition to analyzing ICPS, we also carefully 
examined other clinical indicators such as age, gender, 
and TNM staging to evaluate the differences between 
the risk groups. Statistical significance was 
established if the p-value obtained from the 
chi-square test was below the threshold of 0.05. This 
analysis aided in identifying statistically significant 
differences in clinical indicators between the low-risk 
and high-risk cohorts. 

Association between ICPS and several 
mutation Indices  

Firstly, we explored the mutation landscape of 
different risk groups with LUAD via the “maftools” R 
package [31]. Next, the single-nucleotide variant 
(SNV) data of LUAD was downloaded from the 
TCGA database. Based on the SNV data, the tumor 
mutation burden (TMB) was evaluated to analyze the 
differences between the ICPS groups [32]. Besides, we 
analyzed the differences in tumor stemness indicators 
between ICPS groups, such as transcriptomic 
signatures based-index (mRNAsi), DNA methylation 
based-index (mDNAsi), epigenetic regulation based- 
index (EREG-mDNAsi), differentially methylated 
probes-based stemness index (DMPsi), and 
enhancer-based stemness index (ENHsi). The tumor 
stemness was closely related to tumor prognosis 
based on the previous studies. What’s more, we 
compared the genomic instability state between ICPS 
groups according to the homologous recombination 
deficit (HRD) score, which could help predict the 
responsiveness of malignant tumors to platinum 
chemotherapy and PARPi therapy. The Wilcoxon test 
was used to compare the group differences mentioned 
above. 

The immune landscape of ICPS in LUAD 
Firstly, the level of tumor immune infiltrating 

cells of each LUAD sample was obtained based on the 
TIMER [33, 34] (https://cistrome.shinyapps.io/ 

timer/), EPIC [35], CIBERSORT [36], and MCPcounter 
[37]. We explored the relationship between ICPS and 
tumor immune infiltrating cells by Pearson’s correla-
tion analysis. Next, the immune score, stromal score, 
and tumor purity of the TCGA-LUAD cohort were 
calculated to explore the association between ICPS 
and the immune landscape via the “ESTIMATE” 
algorithm. The T cell dysfunction and exclusion 
(TIDE) method [38, 39] was utilized to investigate the 
response to different immune treatments. Addition-
ally, a quantitative assessment was conducted on 
LUAD samples. The TIDE scores of the LUAD 
samples were obtained from the website: http:// 
tide.dfci.harvard.edu/. The previous study identified 
49 molecular markers related to immune 
characteristics. Building upon the above-mentioned 
study, we examined the correlation between ICPS and 
tumor immune characteristics. Given the substantial 
importance of immune checkpoints (ICS) and 
immunogenic cell death (ICD) modulators in tumor 
immunity, our objective was to investigate the 
correlation between ICPS and both ICS and ICD 
modulators. Correlation statistical analyses were 
performed using the Spearman method. Furthermore, 
we measured 29 immune functions in the ICPS risk 
groups via the "CIBERSORT" R package. Subsequent 
analysis was performed to examine the disparities in 
immune function across the groups. 

Investigating the role of ICPPI in response to 
immunotherapy  

The IMvigor210 cohort including 298 patients 
who were treated with anti-PD-L1 immunotherapy 
and GSE78220, including patients treated with 
anti-PD-1 antibody were used to investigate the 
association between the ICPS and immunotherapy 
after normalizing. The Kruskal-Wallis test was used to 
investigate the difference in ICPS scores across the 
various response groups (CR, PR, PD, and SD). The 
“survival” R package was used to explore the 
difference in survival between the ICPS risk groups. 
The ROC curves were used to assess the prediction of 
the efficacy of immunotherapy via the “pROC” R 
package. 

Drug sensitivity exploring  
Subsequently, our efforts focused on identifying 

numerous innovative therapeutic drugs, which 
provide several new options for treating LUAD. We 
initially identified the differentially expressed genes 
(DEGs) between the low-risk and high-risk ICPS 
groups within the entire meta-cohort via the "limma" 
R package. Next, we screened for the overlap of 
up-regulated and down-regulated DEGs between the 
ICPS-related DEGs and normal-ICPS-related DEGs to 
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perform Connectivity map (CMap) analysis in CLUE 
(https://clue.io/). Small molecule drugs with 
|score| ≥ 90 were regarded as potential drugs. 

Statistical Analysis  
All statistical analyses were conducted using the 

R software (version 4.1.0). The threshold for statistical 
significance was set as P < 0.05. 

Results 
Analytic Pipeline 

The LUAD data were obtained from the TCGA 
and GEO databases. The data were subjected to 
quality control, batch effect removal, normalization, 
organization of mutation, and clinical, and survival 
data, before being used for subsequent analysis. 
Figure 1 illustrated the main analysis process of this 
study. 

ICPS Construction 
Initially, the ImmuCellAI was employed to 

evaluate immune cell infiltration of the 24 different 
types in each sample (Table S2). Univariate Cox 
analysis was conducted to determine the prognostic 
significance of the 24 distinct immune cell types 
(Table S3). Figures 2B and 2C illustrated the complex 
connections between the 24 types of immune cells in 
LUAD, with a majority of them showing positive 
connections. In contrast, central memory T cell (Tcm) 
and effector memory T cell (Tem) exhibited a strong 
negative connection with other cells. The results 
suggested that these distinct immune cells could have 
varying roles in immune infiltration, either working 
synergistically or antagonistically. Specifically, naïve 
CD4+ T cell, tregulatory1 cell (Tr1), and CD8+ T cell 
were identified as risk factors for overall survival (OS) 
in LUAD. Natural Treg cell (nTreg), mucosal- 
associated invariant T cell (MAIT), and natural killer 
cell (NK) were identified as favorable factors for OS in 
LUAD (Figure 2A). As described in the methodology, 
a total of 276 immune cell pairs (ICPs) were 
established using 24 different types of immune cells 
(Table S4). The entire set of ICPs underwent a 
log-rank test. A total of 56 ICPs were included in the 
lasso regression equation (Figure 2D, E), followed by 
multivariate regression analysis that involved 28 ICPs 
(Table S5). Finally, 17 ICPs (Table S6) were selected 
for the construction of ICPS (Figure 2E). The area 
under the curve (AUC) value of the ROC curve was 
0.689 at 5 years (Figure 3A). Additionally, LUAD was 
split into high-risk and low-risk subgroups using 
ICPS=9.1417 as the threshold (Figure 3A, Table S7, 
Figure S1). 

Relationship between ICPS and Clinical 
Features of LUAD 

As mentioned earlier, the meta-cohort (n=2499) 
was divided into a training cohort (n=1249) and a 
testing cohort (n=1250). Within the training cohort, 
patients were stratified into two groups based on their 
ICPS levels: the high-risk group (n=543) and the 
low-risk group (n=706), according to the 
predetermined cutoff value. Figure 3B demonstrated 
that LUAD patients with low ICPS exhibited better OS 
(P < 0.05). The result was also validated in the testing 
cohort (P < 0.05), meta-entire cohort (P < 0.05), and 
TCGA-LUAD cohort (P < 0.05) (Figure 3C-E). Overall, 
patients with LUAD in the high-risk group of ICPS 
were at a higher risk of mortality, thus indicating 
ICPS as a prognostic indicator for LUAD. To 
determine whether the ICPS was better than previous 
prognostic signatures, three multiple gene signatures 
were collected and included in the present study. As 
shown in Figure 3F, the ICPS showed a better 
prognosis prediction potential compared to the 
four-gene signature [40], five-gene signature [41], and 
six-gene signature [42] in the TCGA-LUAD cohort, 
especially the ability to forecast over 5 and 10 years. 
Furthermore, we conducted further investigation into 
the clinical differences between the risk groups based 
on ICPS. Additionally, we conducted validation 
across four cohorts (Figure 3G-J). These clinical 
characteristics included survival status, age, gender, 
stage, and grade of relapse (Table S8). The results 
indicated that patients in the high-risk group of ICPS 
across the four cohorts exhibited higher rates of 
relapse (P < 0.05 (training cohort), P = 0.28(test 
cohort), P < 0.05 (total cohort)) and poorer survival 
status (higher proportion of mortality) (P < 0.05 
(training cohort), P < 0.05 (test cohort), P < 0.05 (total 
cohort), P < 0.05 (TCGA-PAAD cohort)). 

Association between ICPS and Mutation 
Figure 4A presented the mutation landscape of 

the 25 most highly mutated genes in patients with 
LUAD based on TCGA data. The high-risk cohort 
displayed a significantly higher mutation rate 
compared to the low-risk cohort. However, for some 
special mutations in LUAD, such as EGFR, KRAS, 
STK11, and TP53, no significant difference was found 
between the high and low ICPS groups, both in the 
wild-type and mutation-type of these genes (Figure 
4B, Table S9, P > 0.05). Higher TMB, coupled with 
increased somatic mutation rates, has been associated 
with enhanced anti-cancer immunity. Figure 5E 
demonstrates that the TMB level exhibited a 
significant increase in the ICPS high-risk group in 
comparison to the low-risk group (P < 0.05).  
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Figure 1: The flow diagram of this study. 
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Figure 2: Screening of immune cells and establishment of immune cell pair score (ICPS). (A) Forest plot for the Hazard Ratios (HRs) of Immune cells. (B, C) Cellular interaction 
and survival landscape of the 24 immune cell types. (D, E) Plot of partial likelihood deviance for the 17 immune cell pairs (ICPs) associated with survival in the training set. (F) 
Forest plot for the HRs of ICPs used for ICPS construction. 
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Figure 3: Survival and clinical difference between ICPS high-risk and ICPS low-risk group. (A) Time-dependent ROC curve for ICPS in the meta-training cohort at 5 years. (B) 
Overall survival curve for ICPS in the training cohort (n=1249). (C) Overall survival curve for ICPS in the testing cohort (n=1250). (D)Overall survival curve for ICPS in the entire 
meta-cohort(n=2499). (E) Overall survival curve for ICPS in the TCGA-LUAD data (n=500). (F) AUC comparison between 4-gene signature, 5-gene signature, 6-gene signature, 
and ICPS. (G-J) The differences in clinical features including status, age, gender, stage, and relapse between the two ICPS risk groups. (G) meta-training cohort, (H) meta-testing 
cohort, (I) entire meta-cohort, (J) TCGA-LUAD cohort. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

754 

 
Figure 4: Correlation between ICPS and genomic mutations using TCGA-LUAD data. (A) The waterfall plots of the top 25 genes with the highest mutation rate in the 
TCGA-LUAD. (B) Correlation between ICPS and gene mutation. (C) Correlation between ICPS and mRNAsi. (D) Correlation between ICPS and EREG-mRNAsi. (E) Correlation 
between ICPS and mDNAsi. (F) Correlation between ICPS and EREG-mDNAsi. (G) Correlation between ICPS and DMPsi. (H) Correlation between ICPS and ENHsi. 
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RNAsi was identified as a novel predictor 
associated with stem-like characteristics and tumor 
prognosis. No significant difference was observed in 
EREG-mRNAsi score levels between the two groups 
(Figure 4D, P > 0.05). Patients in the ICPS low-risk 
group exhibited lower mRNAsi scores (Figure 4C, P < 
0.05), mDNAsi (Figure 4E, P < 0.05), EREG-mDNAsi 
(Figure 4F, P < 0.05), DMPsi (Figure 4G, P < 0.05), and 
ENHsi (Figure 4H, P < 0.05) when compared to those 
in ICPS high-risk set. HRD leads to impaired repair of 
double-strand breaks, making it a common driver of 
tumorigenesis. Patients in the ICPS low-risk set 
showed lower HRD scores and higher HRD 
expression compared to those in the ICPS high-risk set 
(Figure 5C-D, P < 0.05) (Table S10).  

The immune landscape of ICPS in LUAD 
The association between ICPS and tumor 

immune infiltrating cells was explored. The study 
concluded that ICPS showed positive correlations 
with macrophages, CD8+-T cells, and 
cancer-associated fibroblasts (CAFs). Furthermore, 
ICPS exhibited a negative association with NK cells, B 
cells, CD4+-T-cells, and endothelial cells, as indicated 
by the TIMER (Figure 5A, Table S11). Additional 
analyses demonstrated that ICPS showed positive 
associations with cytotoxic lymphocytes, NK cells, 
CD8+-T-cells, monocytic lineage, and fibroblasts. 
Conversely, ICPS demonstrated negative associations 
with B lineage, myeloid dendritic cells, T-cells, 
neutrophils, and endothelial cells from the EPIC 
(Figure 6B, Table S11). Furthermore, the results 
obtained using the CIBERSORT and MCPcounter 
algorithms were in line with the aforementioned 
findings (Figure S2, Table S11). Immune-related 
scores are valuable in assessing the prognosis of 
tumor patients and the effectiveness of 
immunotherapy. Our results indicated that patients in 
the low-risk group exhibited higher ESTIMATE scores 
(Figure 5F, P < 0.05), immune scores (Figure 5G, P < 
0.05), and stromal scores (Figure 5H, P < 0.05) 
compared to those the high-risk set (Table S10). The 
analysis revealed that LAG3, PDCD1, TMIGD2, 
TNFRSF18, TNFRSF4, TNFRSF8, TNFSF4, CD276, 
CD70, and IDO1 displayed positive associations with 
ICPS. In contrast, IDO2, TNFSF15, BTLA, CD28, 
CD40LG and HHLA2 exhibited negative associations 
with ICPS (Figure 6A). Additionally, PANX1, CALR, 
CXCL10, EIF2A, EIF2AK1, and HMGB1 showed a 
positive correlation with ICPS. Conversely, IFNK, 
P2RY2, TLR3, and HGF exhibited a negative 
correlation with ICPS (Figure 6B). Tertiary lymphoid 

structures (TLS) were found to play a crucial role in 
tumor immunity. This study examined the correlation 
between ICPS and TLS gene signatures. The results 
revealed a positive association between ICPS and 
CCL3, CCL4, CCL5, CCL8, CXCL10, CXCL11, and 
CLCL9 (Figure 6C) (Table S12).  

Relationship between ICPS and 
immunotherapy  

Immunotherapies, such as PD-L1 and PD-1 
blockade, have undoubtedly made significant 
advances in tumor treatments. The low-risk subgroup 
of patients (n = 86) exhibited longer survival (Figure 
7A, Table S13, P = 0.11) compared to the ICPS 
high-risk subgroup (n = 261) in IMvigor210. 
Furthermore, the study explored the predictive value 
of the ICPS in anti-PD-L1 immunotherapy (Figure 
7B-E). Patients with ICPS-high risk were more likely 
to benefit from anti-PD-L1 treatment (Figure 7B-C), as 
confirmed by the Wilcox test (P = 0.029, Figure 7D-E). 
ICPS was identified as a predictive biomarker for 
anti-PD-L1 immunotherapy benefits (Figure 7F, AUC 
= 0.600). Furthermore, we investigated whether ICPS 
could play a role in the response to anti-PD-1 
treatment using cohort GSE78220. Patients with 
ICPS-low risk showed better survival (P = 0.19, Figure 
7G). Patients with ICPS-low risk showed a better 
response to anti-PD-1 immunotherapy (Figure 7H-I), 
as indicated by the results of the Wilcox test (P = 0.96, 
Figure 7J-K). The ICPS was further demonstrated to 
be a reliable predictive tool for the benefits of 
anti-PD-1 therapy (AUC = 0.538, Figure 7L) (Table 
S13). Despite the limited sample size and its 
non-LUAD origin, the results confirmed that ICPS 
plays a significant role in predicting the response to 
immunotherapy. 

Novel Candidate Drugs Treating LUAD 
After categorizing LUAD patients into ICPS high 

and low-risk groups, a total of 115 DEGs consisting of 
65 up-regulated DEGs and 50 down-regulated DEGs 
were identified through a meta-entire cohort (Figure 
8A-B, Table S14). The top 50 DEGs were then selected 
for CMap (Connectivity map) analysis. This pattern of 
gene regulation highly overlaps with several drugs 
that could be involved in the treatment of PAAD 
patients (Table S15), including BRD-K50836978 
(purvalanol-a), BRD-K71035033 (masitinib), BRD- 
K04546108 (JAK3-inhibitor-VI), BRD-K52522949 
(NCH-51), BRD-K56334280 (amonafide), and 
BRD-K22503835 (scriptaid) (Figure 8C-H). 
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Figure 5: Correlation between ICPS and immune features. (A) Correlation between ICPS and immune cells in TIMER database. (B) Correlation between ICPS and immune cells 
based on EPIC. (C) Correlation between ICPS and HRD score. (D) Correlation between ICPS and HRD expression. (E) Correlation between ICPS and TMB. (F) Correlation 
between ICPS and ESTIMATE score. (G) Correlation between ICPS and immune score. (H) Correlation between ICPS and stromal score. 
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Figure 6: Immune landscape of ICPS in LUAD. (A) Correlation between ICPS and immune indicators. (B) Correlation between ICPS and ICD modulators. (C) Correlation 
between ICPS and TLSs. 

 

Discussion 
Currently, the incidence and mortality of lung 

cancer are at the forefront of all kinds of malignant 
tumors. The most common histological type is LUAD. 
Historically, surgery, radiotherapy, and 
chemotherapy have been the primary treatment 
modalities. Recently, EGFR-TKIs targeted therapy 
and immunotherapy have emerged as promising 
approaches for patients with LUAD [43]. However, 
despite having high PD-L1 expression, patients with 
LUAD did not derive notable benefits from 
immunotherapy, possibly due to their unique TME 
[44]. TME is composed of tumor cells, stromal 
components, and immune components. Numerous 
studies have increasingly shown the significance of 
immune cell infiltration within the TME in 
influencing the prognosis of malignant tumor patients 

and the effectiveness of immunotherapy [45, 46]. 
However, the heterogeneity of tumor patients results 
in variability in the TME of LUAD patients, 
potentially contributing to differences in their 
response to immunotherapy [47, 48]. Hence, 
investigating the heterogeneity of the TME in LUAD 
patients was deemed crucial for identifying novel 
strategies in the selection of patients for 
immunotherapy. In this study, we evaluated the 
infiltration levels of 24 types of immune cells in 2499 
LUAD samples from 14 different public datasets 
using the ImmuCellAI. ImmuneAI can identify 6 
types of immune cells and 18 subsets of T cells, 
including iTreg, Tc, and exhausted T cells etc. The T 
cell subpopulations in question are of significant 
importance in the context of tumor immunity and 
immunotherapy. 
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Figure 7: ICPS for predicting the effect of immunotherapy. (A) Kaplan-Meier curves for patients with high (n = 261) and low (n =86) ICPS in the IMvigor210 cohort. (B) Rate of 
clinical response (complete response (CR)/ partial response (PR) and stable disease (SD)/progressive disease (PD)) to anti-PD-L1 immunotherapy in high or low ICPS groups in 
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the IMvigor210 cohort. (C) Rate of clinical response to anti-PD-L1 immunotherapy in high or low ICPS groups in the IMvigor210 cohort. (D, E) Distribution of ICPS in groups with 
different anti-PD-L1 clinical response statuses. (F) ROC curve measuring the predictive value of the ICPS. (G) Kaplan-Meier curves for patients with high (n = 23) and low (n =4) 
ICPS in the GSE78220 cohort. (H) Rate of clinical response (complete response (CR)/ partial response (PR) and stable disease (SD)/progressive disease (PD)) to anti-PD-1 
immunotherapy in high or low ICPS groups in the GSE78220 cohort. (I) Rate of clinical response to anti-PD-1 immunotherapy in high or low ICPS groups in the GSE78220 cohort. 
(J, K) Distribution of ICPS in groups with different anti-PD-1 clinical response statuses. (L) ROC curve measuring the predictive value of the ICPS. 

 
Figure 8: Candidate drugs targeting ICPS identification. (A, B) DEGs identification among ICPS-risk groups. (C-H) The top six drugs that could potentially be used to treat 
LUAD. 

 
To account for batch effects and errors among 

multiple platforms, we only considered pairwise 
comparisons of immune cell infiltration levels within 
the cohort based on immune cell pairs. Based on the 
total of 276 immune cell pairs, the ICPS was 
established using 24 different types of immune cell 
pairs. We found that the patients with low ICPS 
showed better OS compared to those with high ICPS. 
These results demonstrated that the ICPS system was 
a valuable prognostic indicator for LUAD. What’s 
more, we investigated the correlation between ICPS 

and immunotherapy. We observed that patients with 
high ICPS in LUAD had elevated TMB in comparison 
to those with low ICPS. It has been previously 
reported that TMB is linked to improved clinical 
response to single immunotherapy in certain solid 
tumors, with patients having high TMB exhibiting 
significantly better response compared to those with 
low TMB [49, 50].  

A variety of immune cells are involved in tumor 
progression and immune regulation, such as 
regulatory T cells (Tregs), regulatory macrophages 
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(Mregs), NK cells, tolerogenic dendritic cells (tolDCs), 
and regulatory B cells. Previous studies have shown 
that immune cells can affect the prognosis and 
immunotherapy efficacy of cancer patients, including 
LUAD [51]. Patients with ICPS high-risk scores have 
more various chemokines, including CCL3, CCL4, 
CXCL9, and CXCL10, which means that tumors in the 
body will recruit more CD8+ cells [51-53]. CD8+ cells 
are often considered to have anti-tumor effects, but in 
our study, we found that patients in the high-ICPS 
risk score group had higher levels of CD8+ T cell 
infiltration, which is inconsistent with previous 
prognoses and has piqued our interest [54]. In the 
analysis of immune checkpoint correlation, we found 
a significant correlation between LAG3 and ICPS, 
which may explain this phenomenon. LAG3 as the 
third immune checkpoint is often associated with 
poorer prognosis and less immunotherapy benefit at 
higher levels. Although there is an increase in CD8+ T 
cells in the high-ICPS patient group, there is also 
increased expression of LAG3 leading to increased 
tumor immune suppression [55, 56]. Previous studies 
have confirmed that melanoma patients with 
LAG3+CD8+ immunotype have worse prognosis 
after immunotherapy. Therefore, it may be easier for 
patients in the high-ICPS group to benefit from 
LAG3+ checkpoint inhibitors and further exploration 
can be conducted in this direction [57]. At the same 
time, patients in the high-level ICPS group have lower 
ESTIMATE scores indicating higher tumor purity and 
poorer prognosis [58]. 

We evaluated the predictive ability of ICPS on 
immunotherapy responses using anti-PD-L1 and 
anti-PD-1 immunotherapy. In IMvigor210, the 
patients with ICPS low-risk had longer survival. 
Notably, patients classified as ICPS-high risk were 
more likely to benefit from anti-PD-L1 treatment, 
suggesting that ICPS could serve as a predictive 
biomarker for anti-PD-L1 immunotherapy benefits. 
Similarly, in GSE78220, patients in the ICPS-low-risk 
set demonstrated better survival when compared to 
the ICPS-high-risk set. Furthermore, the 
ICPS-low-risk group exhibited a better response to 
anti-PD-1 immunotherapy in comparison to the 
ICPS-high-risk group, indicating that ICPS may also 
serve as a viable prediction tool for assessing the 
benefits of anti-PD-1 therapy. In the PD-L1 treatment 
group, the high-risk group was more likely to benefit 
from immunotherapy and reach CR/PR. However, 
the higher risk group had a worse prognosis, which is 
consistent with the aforementioned conclusions. This 
suggests that PD-L1 therapy does not fully improve 
patient outcomes in the high-risk ICPS group. 
Moreover, considering the significant differences in 
LAG3 among patients in different groups of ICPS, it 

may be that ICPS is more meaningful in predicting 
patients' recovery from LAG3 inhibitor therapy. 
However, due to the lack of publicly available 
datasets on immunotherapy for LUAD, we were 
unable to verify the predictive ability of ICPS in this 
context. Therefore, our future research will focus on 
collecting samples to further study and validate this 
potential. 

In malignant tumors, the presence of a distinct 
subset of tumor cells exhibiting self-renewal and 
differentiation capabilities has been confirmed by 
researchers. These cells, characterized by stemness 
properties, are referred to as cancer stem cells (CSCs) 
[59]. In primary tumors, undifferentiated CSCs are 
more likely to disseminate and invade compared to 
normal tumor cells, thereby contributing to cancer 
progression and poor prognosis among patients [60]. 
Moreover, CSCs also play a critical role in tumor drug 
resistance [61, 62]. Stemness classification can be 
utilized by researchers to identify novel molecular 
markers that can guide clinical tumor treatment and 
prognosis assessment [63]. Various models based on 
mRNAsi have demonstrated the potential of stemness 
scores as powerful indicators for predicting tumor 
prognostic and treatment response [64, 65]. We 
observed that patients with ICPS low-risk exhibited 
lower mRNAsi scores, mDNAsi, EREG-mDNAsi, 
DMPsi, and ENHsi in this study. These findings 
suggest that the ICPS high-risk group possessed a 
higher degree of tumor stemness, with a tendency 
toward poorly differentiated and more malignant 
tumor tissues. 

DNA can undergo various types of damage as a 
result of endogenous and exogenous factors. Among 
these, DNA double-strand break (DSB) damage is the 
most cytotoxic [66]. Under normal circumstances, the 
body maintains the integrity and stability of the 
genome by utilizing repair pathways, with 
homologous recombination (HR) being one of the 
repair methods for repairing DSBs [67]. Numerous 
studies have demonstrated the association between 
HR-related genes or proteins and tumor sensitivity to 
radiotherapy and drugs. As a novel biomarker, HRD 
plays a significant role in the individualized treatment 
of tumors [68]. In our study, we observed that patients 
in the ICPS low-risk group showed lower HRD scores 
and higher HRD expression in comparison to those in 
the ICPS high-risk group. These findings suggest that 
ICPS can reflect the level of HRD and may serve as a 
suitable tool for guiding tumor prognosis, as well as 
potentially guiding patients toward the use of PARPi 
(PARP inhibitor). 

In addition to immunotherapy, drug therapy, 
particularly chemotherapy, remains a primary 
treatment strategy for LUAD. Therefore, our 
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investigation also aimed to identify potential novel 
therapeutic candidates for LUAD. We identified six 
drugs, specifically BRD-K50836978 (purvalanol-a), 
BRD-K71035033 (masitinib), BRD-K04546108 
(JAK3-inhibitor-VI), BRD-K52522949 (NCH-51), 
BRD-K56334280 (amonafide), and BRD-K22503835 
(scriptaid). Further analysis revealed that these drugs 
may share common mechanisms of action, such as 
inhibition of histone deacetylase (HDAC) and 
cyclin-dependent kinase (CDK). 

This research also has certain limitations. Despite 
efforts to collect and utilize multiple LUAD cohorts, 
we were unable to gather external data for 
verification, and no experiments have been done to 
confirm our conclusions. Moving forward, our next 
step involves collecting data from LUAD patients 
within our hospital and conducting validation studies 
on the ICPS in the near future. This is highly 
significant for predicting the future prognosis and 
treatment of LUAD patients, particularly in 
immunotherapy. It also offers insights for developing 
precise treatment plans. 

Conclusion 
In this study, we devised and validated an ICPS 

as a prognostic indicator for LUAD. This score holds 
potential as a valuable tool for identifying patients 
who are suitable candidates for immunotherapy. Our 
comprehensive assessment of immune cell 
interactions in LUAD contributes to a deeper 
understanding of infiltration patterns and functions, 
thereby guiding the development of more efficacious 
immunotherapy strategies. 
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