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Abstract 

Breast cancer (BC) is the most prevalent malignancy among women worldwide. Mounting evidence 
suggests that PANoptosis participates in cancer development and therapy. However, the role of 
PANoptosis in BC remains unclear. In this study, we identified ten PANoptosis-related genes using Cox 
regression analysis, random forest (RF) algorithm and least absolute shrinkage and selection operator 
(LASSO) algorithm. A PANoptosis-related score (PRS) was calculated based on the coefficient of LASSO. 
Notably, we divided the patients into high- and low-risk groups according to the PRS and revealed a 
negative correlation between PRS and overall survival. Next, a nomogram model was constructed and 
validated to improve the clinical application of PRS. Functional enrichment analyses and the Bayesian 
network demonstrated that differentially expressed genes between high- and low-risk groups were 
mainly enriched in immune-related pathways. Besides, we found significant differences in tumor mutation 
burden and tumor immune microenvironment between patients in these two groups using bulk-RNA and 
single-cell RNA sequencing data. Furthermore, charged multivesicular body protein 2B (CHMP2B) was 
identified as the hub gene by combining LASSO, weighted gene co-expression network analysis, RF and 
eXtreme Gradient Boosting. Importantly, using immunohistochemistry analysis based on our tissue 
microarray, we found that CHMP2B was highly expressed in tumor tissue, and CD4 and CD8 were more 
likely to be positive in the CHMP2B-negative group. Survival analyses revealed that CHMP2B adversely 
impacted the survival of BC patients. In conclusion, we not only constructed a highly accurate predictive 
model based on PRS, but also revealed the importance of PANoptosis-related gene signature in the 
modulation of the tumor microenvironment and drug sensitivity in BC. 
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Introduction 
Breast cancer (BC) is the most prevalent primary 

malignancy among women worldwide, accounting 
for 1 in 4 cancer cases and 1 in 6 cancer deaths of all 
cancers [1]. Currently, BC treatment approaches 
mainly include surgery, chemotherapy, targeted 
therapy, endocrine therapy and radiotherapy [2]. 
Considering the heterogeneity and complexity of BC, 
it is crucial to screen high-risk patients and implement 
more appropriate treatment strategies based on 
pathological characteristics [3]. With the development 

of the DNA microarray and next-generation 
sequencing (NGS) over the past decades, individual 
gene signatures could provide alternative information 
to predict treatment sensitivity and prognosis of BC 
patients in addition to clinicopathological features 
[4-6]. 

Resistance to cell death is a hallmark of cancer 
[7]. Cell death can be divided into accidental cell 
death (ACD) and regulated cell death (RCD), and the 
latter is generally referred to as programmed cell 
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death (PCD) under physiological conditions [8]. 
Apoptosis, pyroptosis and necroptosis are three 
critical PCD pathways characterized by particular 
molecular and genetic features [8]. Many studies have 
already explicitly elucidated the importance of these 
pathways in the carcinogenesis and treatment of BC 
[9-11]. Recently, based on the extensive cross-talk 
between these PCD pathways, a conceptualization of 
an integrated cell death modality called 
“PANoptosis” was formed [12]. PANoptosis is an 
inflammatory PCD pathway activated by the 
simultaneous involvement of components from 
pyroptosis, apoptosis and necroptosis [13]. It could 
not be characterized by any of these pathways alone, 
although it has the essential features of each of them 
[14]. PANoptosis has been proven to participate in 
regulating the tumorigenesis of colorectal cancer and 
the immunotherapy response of gastric cancer [15, 
16]. Besides, He et al. found that PANoptosis was also 
related to the survival of BC patients [17]. However, 
more comprehensive research is still needed to better 
unravel its role in modulating BC progression and 
therapeutic response, as well as the ability to predict 
the prognosis of BC patients in combination with 
other clinical information. 

In this study, we constructed a nomogram based 
on PANoptosis-related genes and clinical features to 
predict the prognosis of BC patients for the first time, 
not only identifying the high-risk patients, but also 
helping to implement more appropriate treatment for 
certain patients. 

Materials and Methods 
Data source 

The gene expression profile and related 
clinicopathological data of TCGA-BRCA were 
downloaded from UCSC Xena and utilized as the 
training cohort in this study [18]. The METABRIC 
breast cancer data was downloaded from cBioPortal 
for external validation [19, 20]. All of the patients 
enrolled had primary breast cancer and M0 tumor 
stage. The baseline characteristics are shown in Table 
S1 and compared using the chi-square test or Fisher’s 
exact test. PANoptosis-related genes were created by 
combining the gene lists of pyroptosis, apoptosis and 
necroptosis, which were collected from the Molecular 
Signatures Database (MsigDB) and literature review 
[21]. Single-cell RNA sequencing (scRNA-seq) data 
was extracted from the GSE161529 dataset in the Gene 
Expression Omnibus (GEO) database [22]. One 
triple-negative breast cancer (TNBC), one human 
epidermal growth factor receptor 2-positive (HER2+) 
and one estrogen receptor-positive (ER+) cases were 
selected for the study. The workflow of this study is 
shown in Figure S1. 

Construction of PANoptosis-related risk score 
and nomogram 

We used the Cox proportional hazard regression 
model to assess the association between the 
expression of each PANoptosis-related gene and the 
overall survival (OS) of patients in the TCGA-BRCA 
cohort. Afterward, the random forest (RF) algorithm 
was conducted to further screen featured genes using 
the randomForest R package [23]. Genes with 
MeanDecreaseGini > 10 were selected for further 
analysis. The Least absolute shrinkage and selection 
operator (LASSO) algorithm was then applied to 
ensure the model’s simplicity and minimize 
overfitting in the model training process [24]. The risk 
score was constructed by using the regression 
coefficients derived from LASSO Cox regression 
analysis: 

𝑃𝑃𝑃𝑃𝑃𝑃 = �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

𝑛𝑛

𝑖𝑖=1

∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 

PRS means the PANoptosis-related score. Coefi 
and Expi represent the coefficient and expression level 
of the corresponding gene, respectively. Based on the 
median risk score, all samples were separated into 
two categories: high-risk group (PRS > median value) 
and low-risk group (PRS < median value). Typical 
immunohistochemical (IHC) images of all model 
genes were downloaded from the Human Protein 
Atlas (HPA) database. The Kaplan-Meier (KM) 
analysis was used to compare the differences in OS 
between these two groups. The time-dependent 
receiver operating characteristic (ROC) curve was 
generated to evaluate the prognostic performance of 
the PRS. Combined with the clinicopathological 
features that were statistically significant in univariate 
(p-value < 0.10) and multivariate (p-value < 0.05) Cox 
regression analysis, we subsequently used the “rms” 
package to predict 1-, 3-, 5-, and 10-year OS by 
constructing a nomogram. The nomogram’s 
discrimination performance was quantitatively 
assessed by the area under curve (AUC) of the ROC 
curve, and the calibration performance was evaluated 
by the calibration curve. 

Functional enrichment analysis 
Differentially expressed genes (DEGs) between 

high- and low-risk groups were identified using the 
“DESeq2” package in R software [25]. Functional 
enrichment analyses based on Kyoto Encyclopedia of 
Genes and Genomes (KEGG), Gene Ontology (GO) 
and Reactome databases were carried out between 
these two groups, and the results were evaluated by 
the R package “clusterProfiler” [26] and 
“ReactomePA” [27]. The Bayesian network was 
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applied using the “CBNplot” R package to 
understand how GO and Reactome pathways interact 
with one another [28]. 

Somatic mutation analysis 
Somatic mutation data retrieved from The 

Cancer Genome Atlas (TCGA) were analyzed using 
the R package “maftools” [29]. The tumor mutational 
burden (TMB) of each patient between high- and 
low-risk groups was calculated and compared using 
the Wilcoxon rank-sum test. 

Immunogenomic landscape analysis 
We used CIBERSORT to predict the proportions 

of 22 types of tumor-infiltrating immune cells (TIICs) 
in each sample. Single sample Gene Set Enrichment 
Analysis (ssGSEA) was applied to predict the 
abundance of 28 TIICs in individual tissue samples 
[30]. Furthermore, we used the R package “estimate” 
to calculate each sample’s ESTIMATE score. The 
Immunophenoscore (IPS) scores, which are calculated 
based on representative cell-type gene expression 
z-scores, were collected from the Cancer Immunome 
Atlas (TCIA) [31]. The tumor immune exclusion score 
was calculated by the Tumor Immune Dysfunction 
and Exclusion (TIDE) [32, 33]. Moreover, we 
compared the expression of genes from the human 
leukocyte antigen (HLA) family and several critical 
co-stimulators between high- and low-risk groups 
using the Wilcoxon rank-sum test. 

Identification of PANoptosis-associated single 
cells 

Seurat (v4.3.0) was utilized for quality control 
and processing of scRNA-seq data [34]. Cell types 
were annotated based on the CellMarker 2.0 database 
and relative literature [35, 36]. Single-Cell Map of 
Diverse Immune Phenotypes in the Breast Tumor 
Microenvironment (Scissor) package was used to 
identify bulk phenotype-associated cell subpopula-
tions [37]. In this study, the input data of the Scissor 
pipeline included TCGA-BRCA bulk data, GSE161529 
scRNA-seq data and PANoptosis-related risk group 
data obtained from LASSO analysis. Based on the 
signs of the estimated regression coefficients, the 
single cells were finally grouped into Scissor positive 
(Scissor+) and Scissor negative (Scissor-) cells, 
corresponding to the high-risk group and low-risk 
group in TCGA-BRCA bulk data, respectively. 

Therapeutic efficacy estimation 
We utilized the R package “oncoPredict” to 

calculate the half-maximal inhibitory concentration 
(IC50) based on the GDSC2 dataset of the Genomics of 
Drug Sensitivity in Cancer (GDSC) database [38]. 
Besides, we assessed the expression of target genes 

associated with drugs exhibiting different sensitivities 
between high- and low-risk groups using the 
DrugBank database [39]. 

Screening for the hub gene 
Weighted gene co-expression network analysis 

(WGCNA) was applied to identify hub genes among 
ten PANoptosis genes. We used the R package 
“WGCNA” to construct the co-expression network of 
genes from the TCGA-BRCA dataset [40]. According 
to their expression patterns, genes were classified into 
four modules (brown, blue, turquoise and grey). 
Subsequently, the correlation between modules and 
PRS was calculated. The brown module, which 
showed the highest correlation with PRS, was selected 
for further analysis. Besides, we applied eXtreme 
Gradient Boosting (XGBoost) to further calculate the 
importance of each gene in this ten-gene signature 
using the R package “XGBoost” [41]. Finally, the hub 
gene was characterized by combining the results from 
WGCNA, LASSO, RF and XGBoost.  

Validation of the hub gene by IHC  
The tissue microarray (TMA) was made by the 

production company (SHANGHAI OUTDO 
BIOTECH CO., LTD.) using wax blocks of 105 breast 
cancer and 41 normal breast tissue. The tissues were 
collected from patients with primary breast cancer 
and without metastases at diagnosis in the Second 
Affiliated Hospital of Harbin Medical University 
(Table S1). After de-paraffinization and rehydration, 
tissue sections were incubated in antigen retrieval 
buffer and heated in a steamer above 97 °C for 20 min. 
IHC staining was conducted utilizing Ventana 
Discovery XT Automated Slide Stainer (Ventana 
Medical Systems, Inc., Tucson, AZ, USA). The 
automated Discovery XT system was employed to 
carry out deparaffinization, antigen retrieval, 
blocking, DAB detection, counterstaining, post- 
counterstaining and slide cleaning. Charged 
multivesicular body protein 2B (CHMP2B) antibody 
(Abclonal, A19244), CD4 antibody (MXB biotechno-
logies, RMA-0620) and CD8 antibody (MXB 
biotechnologies, MAB-1031) were respectively 
applied to tissue sections overnight in a humidity 
chamber at a dilution of 1:200 at 4 °C. After washing 
in TBS, the antigen-antibody binding was detected 
using the Envision+ system and DAB+ chromogen 
(DAKO). Tissue sections were briefly immersed in 
hematoxylin for counterstaining, washed with water 
and covered with coverslips. Subsequently, slides 
were independently evaluated by two pathologists 
under a multi-headed microscope in a blinded 
manner. The staining intensity level was scored from 
0 to 3 (no staining, light brown, brown, and tan). The 
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staining extent was rated from 0 to 4 based on the 
percentage of positive cells (0–5%, 5–25%, 26–50%, 51–
75%, and 76–100%). Finally, the IHC score was 
defined as the product of staining intensity and extent 
scores, ranging from 0 to 12. Scores 0–4 were grouped 
as negative and 5–12 as positive. Clinical character-
istics were compared using Chi-square tests. 
Continuous variables were converted to categorical 
using X-tile software (Version 3.6.1) [42]. We then 
used the KM curve to estimate survival outcomes, and 
the Cox proportional hazards model was performed 
to fit clinical characteristics for OS. This research was 
approved by the Ethics Committee of Harbin Medical 
University (reference number KY2021-058). 

Statistical analysis 
All statistical analyses were implemented using 

R v4.2.2 and SPSS 26.0. A p-value < 0.05 was 
considered significant unless stated otherwise. 

Results 
Identification of a ten-gene 
PANoptosis-related signature in breast cancer 

Sixty-five PANoptosis-related genes (Table S2) 
were input into univariate Cox regression analysis in 
the TCGA-BRCA training set, and thirteen genes 
significantly affected OS were obtained (Figure 1A). 
Subsequently, we applied the RF analysis and found 
that the MeanDecreaseGini for each of these genes 
was higher than 10 (Figure 1B). Then, the LASSO 
regression analysis was performed on these genes, 
and ten PANoptosis-related genes with non-zero 
coefficients were selected for further model 
construction (Figure 1C, D). Finally, based on the 
coefficients derived from the LASSO analysis, the 
formula for the risk score was as follows: PRS = 
(-0.174034262515715)*CHMP6 + 
(-0.0701780204898664)*TP63 + 
(-0.449396144853978)*IRF2 + 
(-0.121272009866694)*CASP7 + 
(-0.146272576423145)*CHMP4A + 
(-0.0749366454708963)*IL18 + 
0.268668804297125*AIFM1 + 
0.114110313114337*CHMP2B + 
(-0.0789991578059556)*GZMB + 
0.179084139171232*CHMP3. To better unearth the 
potential mechanism of PANoptosis-related genes, we 
divided patients into high-risk and low-risk groups 
based on their PRS. All ten PANoptosis-related genes 
used for model construction were differentially 
expressed between the high- and low-risk groups 
(Figure 1E). Besides, we obtained typical IHC images 
of these genes from the HPA database (Figure 1F). 

Notably, the KM analysis further proved the 
prognostic value of PRS (Figure 1G). For external 
validation, the result of METABRIC data was 
consistent with the TCGA cohort (Figure 1H). 

Construction and validation of a clinical 
nomogram 

To develop a nomogram based on PRS and 
clinical features, we first applied time-dependent 
ROC to evaluate the prediction efficiency of PRS. As 
shown in Figure 2A, the AUC at 1-year, 3-year, 5-year 
and 10-year OS was 0.733, 0.694, 0.678 and 0.615, 
respectively. Next, we evaluated the prognostic effect 
of PRS, age, estrogen receptor (ER) status, T stage and 
lymph node status in univariate Cox regression 
analysis, and factors with p-value < 0.1 were enrolled 
in multivariate Cox regression analysis (Figure 2B). 
According to the results of multivariate Cox 
regression analysis, we selected age, ER status, lymph 
node status and PRS to develop the final model 
(Figure 2C). Given the complexity of the risk score 
formula, we constructed a nomogram to predict 1-, 3-, 
5- and 10-year OS of BC patients (Figure 2D). In our 
model, higher OS rates were associated with a lower 
risk score, younger age, positive ER status and 
negative lymph node metastasis. The AUC of the 
nomogram was 0.857, 0.750, 0.721, and 0.804 for 1-, 3-, 
5- and 10-year survival, respectively (Figure 2E). The 
calibration curve revealed that the predicted curve of 
the nomogram was nearly identical to the actual curve 
of BC patients, suggesting the close relationship 
between predicted survival rates and actual rates at 1, 
3, 5 and 10 years (Figure 2F). In addition, the ROC and 
calibration curves of the external validation cohort 
further confirmed the significant predictive value of 
our model (Figure 2G, H). Taken together, these 
results demonstrated the outstanding performance of 
our nomogram compared with previously established 
prognostic models [43-45]. 

Identification of PANoptosis-related signaling 
pathways 

We found 843 DEGs, including 275 up-regulated 
genes and 568 down-regulated genes with |log2FC| > 
1 and adjusted p-value < 0.05 between high- and 
low-risk groups (Figure 3A). In functional enrichment 
analysis, DEGs were mainly enriched in pathways 
correlated to immunity, including cytokine-cytokine 
receptor interaction, natural killer cell mediated 
cytotoxicity, T cell receptor signaling pathway, and 
Th1, Th2 and Th17 cell differentiation in KEGG 
analysis (Figure 3B, Table S3).  
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Figure 1. Identification of a ten-gene PANoptosis-related signature. (A) Forest plot of statistically significant genes in the univariate Cox regression analysis; (B) The 
MeanDecreaseGini index for the thirteen PANoptosis-related genes in the random forest (RF) analysis. (C) Coefficient profiles of PANoptosis-related genes in the least absolute 
shrinkage and selection operator (LASSO); (D) identification of the best parameter (lambda) in LASSO; (E) Violin plot of the expression of ten PANoptosis-related genes in high 
and low PRS groups; (F) typical immunohistochemical (IHC) images of ten PANoptosis-related genes in normal and breast tumor tissues from the HPA database; (G) 
Kaplan-Meier (KM) analysis based on PANoptosis-related score (PRS) in the training cohort; (H) KM analysis based on PRS in the validation cohort. HR: hazard ratio; CI: 
confidence interval; high: high-risk group; low: low-risk group; N: normal; T: tumor; ****: p < 0.0001. 

 
 
GO analysis also revealed that DEGs were 

enriched in gene sets associated with T cell activation, 
lymphocyte mediated immunity, leukocyte cell-cell 
adhesion and immune receptor activity (Figure 3C, 
Table S4). Besides, enrichment based on the Reactome 
database demonstrated that DEGs were related to G 
protein-coupled receptor (GPCR) ligand binding, 
signaling by interleukins, T cell antigen receptor 
(TCR) signaling and PD-1 signaling (Figure 3D, Table 
S5). Furthermore, the BN showed that most pathways 
were intensely correlated (Figure 3E, F). 

Tumor mutation analysis 
Considering that genetic mutations are crucial 

factors in tumorigenesis, we estimated the situation of 
somatic mutation between two groups. The somatic 

mutation rate of the high-risk group was 86.89% (411 
of 473 samples), primarily the missense mutation, and 
TP53 showed the highest frequency of mutations 
(40%) (Figure 4A). The mutation rate in the low-risk 
group was 87.86% (398 of 453 samples), mainly the 
missense mutation, and PIK3CA demonstrated the 
highest frequency of mutations (39%) (Figure 4B). In 
addition, TMB quantification analysis revealed a 
higher TMB in the high-risk group (Figure 4C-E).  

Comprehensive analysis of tumor 
microenvironment 

To delineate the immune status of the tumor 
microenvironment (TME), we performed the 
CIBERSORT algorithm to calculate the proportion of 
immune cells in each group (Figure 5A).  
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Figure 2. Construction and validation of a clinical nomogram. (A) Time-dependent receiver operating characteristic (ROC) curves of the PANoptosis-related score (PRS) in 
predicting the 1-, 3-, 5- and 10-year overall survival (OS); (B) Univariate Cox regression analysis of PRS and clinical characteristics; (C) Multivariate Cox regression analysis of 
PRS and clinical characteristics; (D) Nomogram based on the PRS, age, ER status and lymph node status; (E) Time-dependent ROC curves of the nomogram in predicting the 1-, 
3-, 5- and 10-year OS in the training cohort; (F) Calibration curves of the nomogram in predicting the 1-, 3-, 5- and 10-year OS in the training cohort; (G) Time-dependent ROC 
curves of the nomogram in predicting the 1-, 3-, 5- and 10-year OS in the validation cohort; (H) Calibration curves of the nomogram in predicting the 1-, 3-, 5- and 10-year OS 
in the validation cohort. AUC, area under curve; HR: hazard ratio; CI: confidence interval; ER, estrogen receptor; OS, overall survival. 
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Figure 3. Identification of PANoptosis-related signaling pathways. (A) Volcano plot of DEGs based on PRS; (B) Dot plot of Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis; (C) Dot plot of Gene Ontology (GO) enrichment analysis; (D) Dot plot of Reactome enrichment analysis; (E) Bayesian network (BN) based on GO analysis; 
(F) Bayesian network (BN) based on Reactome analysis. 
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Figure 4. Tumor mutation analysis. (A) Waterfall plot of somatic mutation features established with high PANoptosis-related score (PRS); (B) Waterfall plot of somatic 
mutation features established with low PRS; (C) tumor mutation burden (TMB) in the high-risk group; (D) TMB in the low-risk group; (E) Violin plot of TMB in the high- and 
low-risk groups. high: high-risk group; low: low-risk group; ***, p < 0.001. 

 
As expected, the high-risk group was associated 

with saliently fewer CD8+ T cells, M1 macrophages 
and more M2 macrophages than the low-risk group. 
ssGSEA also demonstrated a lower expression of most 
TIICs, including activated B cell, CD4+ T cell, CD8+ T 
cell and dendritic cell in the high-risk group (Figure 
5B). Furthermore, the immune score calculated by the 
ESTIMATE algorithm was statistically lower in the 
high-risk group (Figure 5C). The results obtained 
from TCIA illustrated that the relative probabilities of 
responding to immunotherapy in the high-risk group 
were lower than those in the low-risk group, 
regardless of CTLA4 and PD1 status (Figure 5D). The 
high-risk group also showed a higher tumor immune 
exclusion score, indicating an immune suppressive 
microenvironment (Figure 5E). Moreover, most of the 

HLA genes (Figure 5F) and immune checkpoints 
(Figure 5G) were considerably higher expressed in the 
low-risk group. 

PANoptosis-associated single cell analysis 
We utilized the standard Seurat pipeline to 

explore the scRNA-seq data and got seven cell types 
after dimension reduction, cell clustering and 
annotation (Figure S2A, B, Figure 6A). Subsequently, 
the Scissor algorithm was applied to identify the 
PANoptosis-associated cell subpopulations. In this 
analysis, 884 Scissor+ cells (corresponding to the 
high-risk group) and 1021 Scissor- cells (correspond-
ing to the low-risk group) were classified by the PRS 
of bulk samples (Figure 6B). Notably, we found that 
proportional fractions of T cell, B cell, mast cell and 
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endothelial cell in the Scissor- group were higher than 
Scissor+ group, while epithelial cell, macrophage and 
fibroblast were lower (Figure 6C). Then, we extracted 
T cells, B cells and macrophages to further evaluate 
the relationship between PANoptosis and tumor 
immune microenvironment. In the subgroup analysis, 
immune cells were classified into ten types (Figure 
S2C, D, Figure 6D). Similarly, we got 458 Scissor+ cells 
and 520 Scissor- cells using the Scissor algorithm 
(Figure 6E). Concordantly, the proportion of cell types 
demonstrated that proportional fractions of effector 

memory CD8+ T cell, central memory CD4+ T cell, M1 
macrophage, monocyte, B cell and plasma cell in the 
Scissor- group were higher than Scissor+ group, while 
T follicular helper cell, M2 macrophage, regulatory T 
cell and plasmacytoid dendritic cell were lower 
(Figure 6F). These results were consistent with our 
immune infiltration analysis using bulk data, further 
validating the positive correlation between higher 
PRS (high-risk group) and tumor-promoting immune 
microenvironment. 

 
 
 

 
Figure 5. Comprehensive analysis of tumor immune microenvironment. (A) Boxplot of immune cell proportion in the high- and low-risk groups calculated by CIBERSORT 
algorithm; (B) Boxplot of immune cell expression in the high- and low-risk groups calculated by ssGSEA algorithm; (C) Violin plot of ESTIMATE score in the high- and low-risk 
groups; (D) Violin plot of IPS in the high- and low-risk groups; (E) Violin plot of TIDE exclusion score in the high- and low-risk groups; (F) Violin plot of the expression levels 
of HLA molecules; (G) Violin plot of the expression levels of co-stimulators. high: high-risk group; low: low-risk group; IPS, Immunophenoscore; ns, non-significant; *, p < 0.05; 
**, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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Figure 6. PANoptosis-associated TME analysis at single-cell resolution. (A) UMAP visualization of cell-type-specific annotation. (B) UMAP visualization of Scissor+ and Scissor- 
cells. (C) Proportional fractions of identified cell types across Scissor+/- condition. (D) UMAP visualization of cell-type-specific annotation among extracted immune cells. (E) 
UMAP visualization of Scissor+ and Scissor- cells among extracted immune cells. (F) Proportional fractions of identified cell types across Scissor+/- condition among extracted 
immune cells. 

 
 

Drug sensitivity analysis 
We explored the association between PRS and 

anticancer drug sensitivity in the GDSC database. 
Strikingly, we found some commonly used anticancer 
chemotherapeutic drug agents, including docetaxel 
(Figure 7A), epirubicin (Figure 7B), paclitaxel (Figure 
7C), vinblastine (Figure 7D), vincristine (Figure 7E) 
and vinorelbine (Figure 7F), had a lower IC50 in the 
low-risk group, indicating their better responses in 
treating the low-PRS patients. We further assessed the 
expressions of target genes associated with the drugs 
mentioned above. Target genes from the DrugBank 
database, included JUN, MAP2, NR1I2, TOP2A, 
TUBB, TUBE1 and TUBG1, were differentially 
expressed between the high-risk and low-risk groups 
(Figure 7G). These results suggested that PRS could 
identify more suitable patients for appropriate 
anticancer drug therapy.  

Hub gene screening and experimental 
verification 

To identify the most crucial hub gene among ten 
model genes, we first initiated the WGCNA 
algorithm. A weighted gene co-expression network 
was established utilizing the TCGA-BRCA dataset 
(Figure S3A). The scale-free network was constructed 
by setting the soft threshold to 6 (Figure S3B). 
Moreover, we created an adjacency matrix and 
converted it into a Topological Overlap Matrix 
(TOM). Four gene modules were identified according 
to the TOM, namely blue (3465), brown (2684), grey 

(2599), and turquoise (10775) modules. We found that 
the brown module exhibited the strongest correlation 
with PRS (Figure S3C). Next, we extracted the 
overlapping genes between the brown module and 
the ten model genes, resulting in the discovery of four 
genes - CHMP2B, CHMP3, CHMP4A, and CHMP6. 
Finally, after incorporating the findings from the RF 
(Figure 1B) and XGBoost (Figure S3D) analysis, we 
selected CHMP2B as the hub gene for further 
experimental verification.  

We then performed IHC analyses based on a 
TMA made by 105 BC and 41 normal breast tissue. In 
this cohort, 57.1% of BC patients were CHMP2B 
positive, while only 9.8% of healthy individuals 
highly expressed CHMP2B (Figure 8A, Table 1).  

BC patients were then assigned to the 
CHMP2B-positive or CHMP2B-negative group 
according to their IHC scores. Unsurprisingly, we 
found that CD4 and CD8 were more likely to be 
positive in the CHMP2B-negative group, which was 
consistent with our former bioinformatical findings 
(Table 2).  

 

Table 1. Comparison of CHMP2B expression between BC 
patients and health controls. 

 BC (n = 105) HC (n = 41) p-value 
N % N %  

CHMP2B     < 0.001 
 Negative 45 42.9 37 90.2  
 Positive 60 57.1 4 9.8  
BC, breast cancer; HC, health control; N, number; %, percentage.  
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Figure 7. Drug sensitivity analysis. (A-F) Sensitivity analysis for Docetaxel (A), Epirubicin (B), Paclitaxel (C), Vinblastine (D), Vincristine (E) and Vinorelbine (F) in patients at 
low and high risk; (G) Boxplot of target genes of differentially sensitive drugs. IC50, half-maximal inhibitory concentration; ns, non-significant; high: high-risk group; low: low-risk 
group; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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Figure 8. Experimental validation using IHC analysis. (A) Pie chart of CHMP2B expression in normal and breast tumor tissue. (B) Representative images of CHMP2B expression 
in normal (left panel) and tumor (right panel) tissue. (C) KM survival analysis between patients in CHMP2B-negative and CHMP2B-positive groups. IHC, immunohistochemistry; 
KM, Kaplan-Meier. 

 
Typical photos of IHC in our cohort are shown in 

Figure 8B and Figure S4. Notably, the KM plot 
illustrated that patients in the CHMP2B-negative 
group shared better prognoses than those in the 
CHMP2B-positive group (Figure 8C). The univariate 
and multivariate Cox analysis further confirmed that 
CHMP2B was a detrimental prognostic factor in 
breast cancer (Table 3). 

Discussion 
Several types of PCD pathways, including 

apoptosis, necroptosis and pyroptosis, have been 
found to play an essential regulatory role in cancer 
development [46]. Apoptosis is generally divided into 

an intrinsic pathway and an extrinsic pathway, both 
mediated by the activation of initiator and executioner 
caspases [47]. Activation of necroptosis is mediated by 
the RIP kinases RIPK1 and RIPK3, together with the 
pore-forming pseudokinase MLKL, downstream of 
necrosome formation [48, 49]. Pyroptosis is activated 
through the inflammatory caspases (caspase-1 and 
caspase-4/5) and executed by the gasdermin family 
members (GSDMD and GSDME) [50]. PANoptosis is 
an integrated system in which any of the three PCD 
pathways can compensate for one another and work 
together at different times based on the context of the 
stimulus provided [14]. It is regulated by the 
PANoptosome complex, a molecular scaffold for 
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engaging pivotal pyroptotic, apoptotic, and 
necroptotic machinery [12]. In oncology research, 
PANoptosis has been found to regulate the 
tumorigenesis of colorectal cancer and the 
immunotherapy response of gastric cancer [15, 16]. 
Additionally, PANoptosis-related genes could also 
predict the survival of BC patients and modulate 
tumor immune microenvironment [17]. Moreover, 
Maitra et al. reviewed the molecules in the 
PANoptosis pathway and proposed the hypothesis 
that PD-1/PD-L1-targeted inhibitor might play its 
role through PANoptosis pathway, but the specific 
mechanism of PANoptosis in breast cancer still needs 
further exploration [51]. 

 

Table 2. Relationship between CHMP2B expression and 
clinicopathological characteristics of BC patients. 

Variables CHMP2B  
Positive (n = 60) Negative (n = 45) p-value 
aN % N %  

Age, years     0.299 
 33-51 34 56.7 30 66.7  
 52-83 26 43.3 15 33.3  
bN status     0.525 
 Negative 35 58.3 29 64.4  
 Positive 25 41.7 16 35.6  
Subtype     0.212 
 Luminal 30 50.0 30 66.7  
 HER2+ 20 33.3 11 24.4  
 TNBC 10 16.7 4 8.9  
Ki-67     0.139 
 < 14% 9 15.0 12 26.7  
 ≥ 14% 51 85.0 33 73.3  
CD4     0.024 
 Negative 47 78.3 26 57.8  
 Positive 13 21.7 19 42.2  
CD8     0.017 
 Negative 57 95.0 36 80.0  
 Positive 3 5.0 9 20.0  
BC, breast cancer; aN, number; %, percentage; bN, lymph node; HER2+, human 
epidermal growth factor receptor 2-positive; TNBC, triple-negative breast cancer. 

 
 

Table 3. Univariate and multivariate Cox analysis of prognostic 
factors among BC patients. 

  Univariate Analysis Multivariate Analysis 
HR 95% CI p-value HR 95% CI p-value 

Age, years 
      

 33-51 vs. 52-83 1.281 0.437-3.753 0.651 
   

N status 
      

 Positive vs. 
Negative 

3.017 1.070-8.510 0.037 2.833 1.001-8.021 0.050 

Subtype 
  

0.037 
  

0.220 
 HER2+ vs. Luminal 4.763 1.414-16.046 0.012 - - 0.200 
 TNBC vs. Luminal 4.017 0.876-18.427 0.074 - - 0.516 
ki-67 

      
 < 14% vs. > 14% 3.321 0.691-15.962 0.134 

   
CHMP2B 

      
 Positive vs. 
Negative 

3.832 1.166-12.590 0.027 3.546 1.095-11.480 0.035 

HR, hazard ratio; CI, confidence interval; N, lymph node; TNBC, triple-negative 
breast cancer; HER2+, human epidermal growth factor receptor 2-positive. 

 

Despite the similar research topic [17], this study 
screened PANoptosis-related genes using the 
combination of Cox regression, random forest and 
LASSO algorithm and built a highly accurate 
nomogram based on PANoptosis gene signature and 
clinicopathological information for the first time. 
Among genes in our model, a previous study has 
shown that tumor protein p63 (TP63) could act both as 
a tumor suppressor and an oncogene in breast cancer, 
depending on the cellular context [52]. Moreover, 
Interleukin 18 (IL-18), a pro-inflammatory cytokine, is 
up-regulated on tumor-infiltrating lymphocytes, 
suggesting that IL-18 therapy could enhance 
anti-tumor immunity [53].  

Recently, several models have been developed to 
predict the prognosis of BC patients. Tian et al. have 
built a prognostic model using basement membrane- 
related genes [43]. Cui et al. have also established a 
nomogram based on nicotinamide metabolism- 
related signature [44], while Li’s model was 
constructed utilizing m6A-related genes [45]. 
However, none of these models perform better than 
our PANoptosis-based nomogram (assessed using 
AUC), further proving the vital value of our research. 

We not only constructed a PRS-based prognostic 
model, but also conducted a series of comprehensive 
analyses between patients in the high- and low-risk 
groups. We found that DEGs were enriched in several 
pathways associated with immunity in the functional 
enrichment analysis. Moreover, BN demonstrated an 
intense correlation among these pathways. These 
results suggested that different survival outcomes 
between patients in high- and low-risk groups might 
be partially due to different tumor immune 
microenvironments. To further confirm this 
conjecture, we conducted TMB and immune infiltra-
tion analyses. 

TMB is a quintessential predictive marker for 
cancer immunotherapy [54]. In this study, we found 
that the high-risk group had higher TMB scores. 
Namely, patients with higher PRS might benefit more 
from immunotherapy than those with low PRS. We 
also uncovered the association between PRS and 
immune cell infiltration using various approaches. 
According to our research, the PRS was positively 
related to M0 and M2 macrophages and inversely 
associated with most other immune cells. 
Importantly, we utilized the “Scissor” algorithm to 
better illustrate the differences in immune infiltration 
between high and low PRS groups at the single-cell 
level. Concordant with former results, we found that 
effector memory CD8+ T cell, central memory CD4+ T 
cell, M1 macrophage, monocyte, B cell and plasma cell 
were enriched in the Scissor- (low-risk) group, while T 
follicular helper cell, M2 macrophage, regulatory T 
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cell and plasmacytoid dendritic cell were more 
abundant in the Scissor+ (high-risk) group. 
Furthermore, patients in the low-risk group were 
more sensitive to commonly used chemotherapeutic 
drugs including docetaxel, epirubicin, paclitaxel, 
vinblastine, vincristine and vinorelbine. All of these 
results are in alignment with the better survival 
outcomes of patients in the low-risk group. 

Notably, we identified CHMP2B as the hub gene 
among ten PANoptosis-related genes combining 
LASSO, WGCNA, RF and XGBoost methods. The role 
of CHMP2B in cancer is still controversial. On the one 
hand, it has a detrimental effect on the survival of 
patients with pancreatic adenocarcinoma [55], and 
overexpression of cPLA2G4A and CHMP2B 
simultaneously is correlated to the higher grade of 
myxofibrosarcoma and myxoid liposarcoma [56]. On 
the other hand, CHMP2B is decreased in patients with 
endometrial carcinoma and the urinary exosomes of 
patients with colorectal cancer compared to healthy 
individuals [57, 58]. Recently, Guo et al. revealed that 
cytoplasmic Yes1-associated transcriptional regulator 
(YAP1) could inhibit the proliferation of breast tumors 
by promoting autophagy, potentially through the 
combination of CHMP2B and VPS4B [59]. However, 
the experiments conducted and the model 
constructed in this research were mainly based on 
YAP1, while the role of CHMP2B itself remained to be 
further explored. In our study, we applied IHC 
analysis based on tissue microarray to further validate 
the role of CHMP2B in breast cancer. The results 
indicated that patients with highly expressed 
CHMP2B had significantly lower expressions of CD4 
and CD8 and worse prognoses, which were consistent 
with bioinformatic analyses. 

Despite the merits of our findings, several 
limitations remain to be noted. First, our model was 
constructed and validated retrospectively. Hence, 
prospective research in the real world is highly 
required to underpin the clinical utility of our model. 
Additionally, although IHC analysis based on tissue 
array was performed, rational and precise mechanical 
experiments are considered necessary to unravel the 
underlying mechanisms of these PANoptosis-related 
genes. 

In conclusion, our study constructed and 
validated a PANoptosis-based prognostic model, 
which provided significant value in predicting the 
survival outcomes of BC patients. Besides, we 
processed a series of comprehensive analyses between 
patients with high and low PRS, further confirming 
the importance of PANoptosis-related gene signature 
in the modulation of TME and drug sensitivity in BC, 
providing pivotal insights for subsequent mechanical 

research and helping clinicians make more 
personalized treatment decisions. 
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