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Abstract 

Background: Observational research and medical trials have suggested a connection between gut 
microbiota and glioblastoma, but it remains unclear if the relationship is causal.  
Method: A two-sample Mendelian randomization (MR) study was conducted by employing data from the 
MiBioGen consortium's largest genome-wide association study (n=18340) and the FinnGen consortium 
R8 release information (162 cases and 256,583 controls). Inverse variance weighted (IVW), weighted 
median estimator (WME), weighted model, MR-Egger, simple mode, and MR-PRESSO were used to 
determine the causal relationship between gut microbiota and glioblastoma. Reverse MR analysis was also 
performed on bacteria identified as causally related to glioblastoma.  
Results: Seven causal relationships were identified between genetic liability in the gut microbiota and 
glioblastoma, involving various bacterial families and genera. No significant causal effect was found on gut 
microbiota from glioblastoma, and no significant heterogeneity of instrumental variables (IVs) or 
horizontal pleiotropy was observed.  
Conclusion: A two-sample MR analysis reveals a causal association between the gut microbiota and 
glioblastoma, highlighting the need for more investigation to comprehend the processes behind this 
association. 
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Introduction 
Gut microbiota including bacteria, viruses, and 

fungi refers to the collection of microorganisms, 
which reside in the human gastrointestinal tract [1]. 
They play an essential role in various physiological 
functions, such as digestion, nutrient absorption, and 
immune system regulation [2]. Recent studies have 
shown that gut microbiota is also associated with the 
risk of several diseases, including metabolic diseases 
[3], autoimmune diseases [4], rheumatoid arthritis [5] 
and cancer [6,7].  

Glioblastoma is a highly aggressive brain tumor 
that arises from glial cells in the brain. It is one of the 
most common and deadly forms of primary brain 

cancer, with less than 10% five-year survival rate, 
with a median survival time of less than 15 months 
[8]. The current treatment options for glioblastoma 
include radiation therapy, surgery, and chemo-
therapy, but their efficacy is limited and the prognosis 
remains poor [9].  

Bidirectional communication system “gut-brain 
axis” connects gastrointestinal tract and central 
nervous system [10]. Studies have shown that gut 
microbiota dysbiosis, or an imbalance in gut microbial 
community, can lead to the development of various 
cancers, including brain tumors [11]. In addition, 
preclinical studies demonstrated that certain gut 
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bacteria could modulate immune system and affect 
the efficacy of cancer therapies, including those used 
to treat glioblastoma [12].  

MiBioGen is a comprehensive database of 
microbial genomes, which provides a platform for 
ours to access and analyze microbial genomic data. 
The database is designed to help ours understand the 
genetic basis of microbial evolution, ecology, and 
pathogenesis [1]. MiBioGen contains a vast collection 
of bacterial and archaeal genomes, as well as tools for 
comparative genomic analysis, annotation, and 
visualization [13,14]. The FinnGen study is a 
large-scale genetic study of various disorders in the 
Finnish population. The study aims to identify genetic 
factors that contribute to risk of disorders, as well as 
to understand the biological mechanisms underlying 
the disorders [14]. The FinnGen database contains 
genomic data from over 160,000 individuals, 
including both cases and controls. The data includes 
information on genetic variants, as well as clinical and 
phenotypic data [15]. 

MR is a popular statistical technique used in 
observational studies to estimate causal effect of an 
exposure on an outcome by leveraging genetic 
variation as IVs [16]. This approach exploits random 
allocation of genetic variants at conception to 
determine impact of an exposure on an outcome of 
interest [17]. Two-sample MR approach involves 
using separate datasets for the genetic variants and 
the exposure-outcome data, which allows for 
increased statistical power and flexibility in the 

analysis [18,19]. One of the key advantages of 
two-sample MR is that it enables researchers to 
estimate causal effects for a wide range of exposures 
and outcomes, without the need for expensive or 
time-consuming data collection [20]. Additionally, it 
can help to overcome some limitations of traditional 
MR, such as weak instrument bias and pleiotropy 
(when a single genetic variant influences multiple 
traits) [13]. Overall, Two-sample MR is a powerful 
and flexible approach that can provide valuable 
insights into causal relationships between exposures 
and outcomes.  

Therefore, we used the MibioGen and FinnGen 
databases for the first time to investigate causal 
relationship between gut microbiota and glioblastoma 
using two-sample MR method, eventually to 
accelerate the pace of discovery in the field of human 
genetics, and provide new insights into genetic basis 
for disease. 

Material and Methods 
Study design 

Using a two-sample MR methodology, we 
assessed the link between the gut microbiota and 
glioblastoma. To thoroughly study the role played by 
gut microbiota in the etiology of glioblastoma, we 
conducted MR studies at five distinct character levels, 
including phylum, class, order, family, and genus. 
Figure 1 depicts the research design as well as the 
fundamental MR assumptions. 

 

 
Figure 1. Study design and workflow  
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Exposure data 
The aim of the study was to investigate 

correlations between human genetic variation and gut 
microbiota, specifically through the use of SNPs 
linked to composition of human gut microbiota as IVs 
in a GWAS dataset. The International Consortium 
MiBioGen conducted a large-scale multi-ethnic 
GWAS, which analyzed genotyping data and 16S 
ribosomal RNA gene sequencing from a total of 18,340 
participants across 24 cohorts from various countries, 
including the Germany, United States, Denmark, 
Canada, Israel, Finland, the United Kingdom, the 
Netherlands, Belgium, Sweden, and Korea [13,21]. 
The study identified 211 taxa, including 9 phyla, 16 
classes, 20 orders, 35 families, 131 genera [1]. 

Outcome data 
The FinnGen consortium R8 release data [14,22] 

provided the GWAS summary statistics for 
glioblastoma. The GWAS involved 256,745 Finnish 
individuals, of which 162 were cases and 256,583 were 
controls. To ensure accuracy, the analysis accounted 
for sex, age, first 10 principal components, and 
genotyping batch [14]. 

Instrumental variable selection  
IVs is an abbreviation for instrumental variables. 

The MR method employs genetic variants as IVs to 
infer the causality of an association. The IVs were 
selected based on the following criteria: (1) potential 
IVs were single nucleotide polymorphisms (SNPs) 
associated with each taxa at the locus-wide 
significance threshold (P < 5.0 × 10-6) [3]; (2) the 
linkage disequilibrium (LD) between the SNPs was 
calculated using the 1000 Genomes project European 
samples data as the reference panel, and among those 
SNPs with R2 < 0.001 (clumping window size=10,000 
kb), only the SNPs with the lowest P-values were 
retained; (3) SNPs that have a minor allele frequency 
(MAF) of ≤ 0.01 were removed; and (4) in the presence 
of palindromic SNPs existed, forward strand alleles 

were inferred using allele frequency information. 

Statistical analysis  
We conducted a study for examining the 

relationship between features of the microbiome and 
glioblastoma by employing MR analysis (Figure 2). 
For features with different IVs, we used six popular 
MR methods [23], including IVW [20], weighted mode 
[24], simple mode [24], MR-Egger regression [25], 
WME [26], and MR-PRESSO [27]. The IVW approach 
is mentioned to be barely extra effective than the 
others underneath sure stipulations [26]. Therefore, 
the consequences with extra than one IV have been 
usually primarily based on the IVW method, with the 
other different five methods serving as complements 
[28]. 

Three major principles of MR method selection 
[29]: (1) Preferential use of IVW estimates in the 
absence of heterogeneity and multi-effects; (2) When 
there is only heterogeneity and no multi-effects, the 
results of the WME method are used in preference 
(the random effects model of IVW can also be used); 
(3) When there is multiplicity of effects, the results 
calculated by MR-Egger method are used in 
preference.  

Leave-one-out method refers to gradually 
eliminate each SNP, calculating meta-effects of 
remaining SNPs, and observing whether results 
change after eliminating each SNP, if the results 
change significantly after eliminating a certain SNP, it 
means that the presence of a certain SNP has a 
significant impact on the results [30]. 

One crucial issue in MR studies is the presence of 
weak instrumental variable bias [31]. From a 
traditional empirical perspective, when the F-statistic 
is blow 10, we typically consider genetic variants as 
weak instrumental variables. This may introduce 
some bias into the results, and therefore caution 
should be exercised in interpreting them at this stage. 
Ideally, an F-statistic greater than 10 or even greater 
than 100 would be preferred [32]. 

 
 

 
Figure 2. Mendelian randomization (MR) methods  
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Figure 3. Preliminary correlations between gut microbiota and glioblastoma determined from five popular MR methods. P < 0.05 values were displayed in purple, whereas P > 
0.05 estimates were displayed in white or yellow.  

 
Heterogeneity tests were conducted using both 

Cochran's Q statistic and a two-sample MR package 
across instruments. Evidence of heterogeneity and 
invalid instruments was indicated by Q values greater 
than the number of instruments minus one, while Q 
statistic values significant at p-values < 0.05 suggested 
the presence of heterogeneity [33,34]. 

In order to investigate whether glioblastoma has 
any causal influence on the noteworthy bacterial, we 
conducted a reverse MR analysis. In this analysis, 
glioblastoma was considered as exposure, and 
identified causal bacterial was treated as outcome. To 
accomplish this, we employed SNPs associated with 
glioblastoma as IVs [30]. The settings and procedures 

used were in line with forward MR. 
We performed all statistical analyses using R 

version 4.2.2 (R Foundation for Statistical Computing, 
Vienna, Austria). MR analyses had been carried out 
the usage of the Two-sample MR (version 0.5.6) [35], 
MR-PRESSO (version 1.0) [27], and qvalue (version 
2.30.0) [36] R packages. 

Results 
SNP selection 

Initially, we detected 65, 120, 150, 260, and 902 
SNPs related to gut microbiota at the phylum, class, 
order, family, and genus levels, correspondingly, at a 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

336 

p-value threshold of less than 5 × 10-6. Following 
several quality control procedures, we handpicked 35 
SNPs as instrumental variables (IVs) that met 
genome-wide statistical significance threshold of p < 5 
× 10-6 (Table S1). 

All IVs' F statistics exceeded 10, implying the 
absence of weak instrument bias. Furthermore, 
MR-PRESSO global test found no evidence of 
pleiotropic effects (p > 0.05). Finally, after discarding 
pleiotropic SNPs flagged by MR-PRESSO outlier test 
and MR-Egger regression, no signs of horizontal 
pleiotropy were observed in IVs (both MR-PRESSO 
global test and MR-Egger regression yielded p-values 
greater than 0.05). 

Causal effects of gut microbiota on the 
development of glioblastoma 

The preliminary associations between bacterial 
clusters of various levels of classification derived from 
five popular MR methods and glioblastoma was 
presented in Figure 3. In the IVs dataset (p < 5 × 10-6), 
we found a causal relationship between three 
microbial families and four microbial genera of the 
gut microbiota and glioblastoma (Table 1). Among 
the three microbial families, family Ruminococcaceae 
(OR = 0.094, 95% CI = 0.021-0.417, p = 0.19 × 10-2) was 
shown to be protective against glioblastoma as 
assessed by IVW, whereas an increase in the other two 
microbial families, Bacteroidaceae (OR = 12.003, 95% 
CI = 1.793-80.32, p = 1.03 × 10-2) and Peptococcaceae 
(OR = 3.656, 95% CI = 1.233-10.841, p = 1.94 × 10-2), 
were associated with a high risk of glioblastoma 
development. In addition, an increase in four 
microbial genera, Eubacterium (brachy group) (OR = 
4.431, 95% CI = 1.529-12.842, p = 0.61 × 10-2), 
Actinomyces (OR = 18.805, 95% CI = 2.116-167.165, p 
= 0.85 × 10-2), Bacteroides (OR = 12.003, 95% CI = 
1.794-80.320, p = 1.04 × 10-2) and Ruminiclostridium6 
(OR = 3.641, 95% CI = 1.009-13.139, p = 4.84 × 10-2) 
were found to be associated with an increased risk of 
glioblastoma as assessed by IVW. 

Sensitivity analyses 
The MR-Egger, weighted mode, simple mode, 

weighted median, and IVW methods produced 
comparable causal estimates in both magnitude and 
direction. Visual inspection revealed probable outliers 
of the IVs in scatter plots (Figure 4) and leave-one-out 
plots (Figure 5). Our analysis using the MR-Egger 
regression intercept approach found no indication of 
horizontal pleiotropy for gut microbiota in 
glioblastoma, with a p-value greater than 0.05 (Table 
S2). Results from MR-PRESSO analysis indicated no 
outliers in the data (Table S3). Moreover, the 
Cochrane Q statistics results indicated no significant 

heterogeneity, with a p-value larger than 0.05 (Table 
S4). 

 

Table 1. MR results of causal effects between gut microbiota and 
glioblastoma (P<5×10-6) 

Gut 
microbiota(exposure) 

method nSN
P 

β SE p-val
ue 

OR 95%CI 

Family Bacteroidaceae MR Egger 4 4.2
7 

5.2
6 

0.50 71.3
9 

0.00-2145
757 

WME 4 1.9
0 

1.1
3 

0.09 6.68 0.73-61.61 

IVW 4 2.4
6 

0.9
7 

0.01 12.0
0 

1.79-80.32 

Simple 
mode 

4 1.8
7 

1.6
1 

0.33 6.49 0.28-151.7
4 

Weighted 
mode 

4 1.8
7 

1.5
7 

0.32 6.49 0.30-140.8
6 

Family Peptococcaceae  MR Egger 8 1.1
8 

1.5
1 

0.46 3.27 0.17-62.92 

WME 8 1.3
4 

0.7
5 

0.07 3.82 0.88-16.46 

IVW 8 1.3
0 

0.5
5 

0.02 3.66 1.23-10.84 

Simple 
mode 

8 1.7
1 

1.1
5 

0.18 5.51 0.58-52.60 

Weighted 
mode 

8 1.3
4 

1.0
4 

0.24 3.83 0.50-29.20 

Family Ruminococcaceae  MR Egger 5 0.0
3 

2.4
3 

0.99 1.03 0.00-119.6
2 

WME 5 -2.2
7 

1.0
2 

0.03 0.10 0.01-0.76 

IVW 5 -2.3
6 

0.7
6 

<0.01 0.09 0.02-0.42 

Simple 
mode 

5 -2.3
9 

1.4
0 

0.16 0.09 0.00-1.43 

Weighted 
mode 

5 -2.2
7 

1.3
1 

0.16 0.10 0.00-1.36 

Genus 
Eubacteriumbrachygrou
p  

MR Egger 4 1.9
7 

2.0
0 

0.43 7.18 0.14-361.0
9 

WME 4 1.4
4 

0.6
7 

0.032 4.21 1.13-15.67 

IVW 4 1.4
9 

0.5
4 

<0.01 4.43 1.53-12.84 

Simple 
mode 

4 1.2
6 

0.8
4 

0.23 3.52 0.68-18.09 

Weighted 
mode 

4 1.2
5 

0.8
6 

0.24 3.49 0.64-18.95 

Genus Actinomyces IVW 2 2.9
3 

1.1
1 

<0.01 18.8
0 

2.12-167.1
7 

Genus Bacteroides MR Egger 4 4.2
7 

5.2
6 

0.50 71.3
9 

0.00-2145
757 

WME 4 1.9
0 

1.1
6 

0.10 6.68 0.69-65.18 

IVW 4 2.4
9 

0.9
7 

0.01 12.0
0 

1.79-80.32 

Simple 
mode 

4 1.8
7 

1.5
9 

0.32 6.49 0.29-147.1
5 

Weighted 
mode 

4 1.8
7 

1.5
6 

0.32 6.49 0.31-137.6
0 

Genus 
Ruminiclostridium6 

MR Egger 8 0.6
5 

1.7
5 

0.72 1.92 0.06-59.16 

WME 8 1.1
8 

0.9
0 

0.19 3.24 0.56-18.78 

IVW 8 1.2
9 

0.6
5 

0.05 3.64 1.01-13.14 

Simple 
mode 

8 1.6
0 

1.5
9 

0.35 4.98 0.22-111.3
8 

Weighted 
mode 

8 1.5
1 

1.3
9 

0.31 4.52 0.30-69.10 

CI, confidence interval; IVW, Inverse variance weighted; MR, Mendelian 
randomization; SNP, single nucleotide polymorphism; SE, standard error; OR, 
Odds ratio; WME, weighted median estimator. 
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Figure 4. Scatter plots for the causal association between gut microbiota and glioblastoma. (A) Bacteroidaceae; (B) Peptococcaceae; (C) Ruminococcaceae; (D) Eubacterium 
(brachy group); (E); (F) Bacteroides; (G) Ruminiclostridium6.  

 

Bi‑directional causal effects between gut 
microbiota and glioblastoma risk 

We used glioblastoma as exposure and the 
identified causal bacterial as outcome for evaluating 
any reverse causation effects. Based on five popular 
MR methods, we found that glioblastoma was no 
significance causally associated with the identified 
causal gut microbiota. 

Discussion 
Using a two-sample MR study, we investigated 

manageable causal relationship between gut 

microbiota and glioblastoma, with summary statistics 
for gut microbiota from the International Consortium 
MiBioGen and summary statistics for glioblastoma 
from the FinnGen consortium R8 release data (2022). 
The findings supported the hypothesis that the 
increase in abundance of genetic susceptibility in the 
family Ruminococcaceae was once defensive towards 
glioblastoma, while the different two organizations of 
the family, Bacteroidaceae and Peptococcaceae, and 
four microbial genera, namely, Eubacterium (brachy 
group), Actinomyces, Bacteroides, and Ruminiclos-
tridium 6, had been observed to extend the hazard of 
glioblastoma with growing heritage susceptibility 
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abundance. With the help of reverse MR analysis, no 
appreciable causal association between glioblastoma 
and the identified causal gut microbiota was 
previously identified. 

The causal relationship between hereditary 
susceptibility of gut microbiota and exceptional 
cancers has been established, but the additional 
interest focused on the gut microbiota and 
gastrointestinal tumors because they are in the same 
ecosystem and it is less complicated to find a 
conceivable causal relationship between them [37,38], 
although the doable causal relationships between gut 
microbiota and different cancers is constantly 
mentioned in the literature [39]. However, the causal 
relationship between intestinal plant life and 
glioblastoma has no longer been reported. Zheng et al. 
found that composition of the microbiota significantly 
changed in patients with lung cancer compared with 
control subjects [40]. Zhu et al. also found a change in 
the gut microbial neighborhood in breast cancer 
patients [41]. It is undeniable that connection between 
gut microbiota and the development of cancer is 
receiving more and more attention. However, there is 
nonetheless a dearth of solid proof on the microbial 
elements of gut microbiota that make contributions to 

most cancer development. Although some possible 
causative linkages between the gut microbiota and 
cancer have been hypothesized in some animal 
models due to the complicated interplay between the 
gut microbiota and the human host, the precise causal 
relationship between the two remains undetermined. 
The following limitations apply to observational 
studies: it is impossible to determine the temporal 
order between exposure and result, and it is 
impossible to account for the impact of several 
confounding variables [42]. Gut microbiota is 
influenced by distinctive factors, including diet [43], 
BMI [44], medications [45], and different factors [46], 
all of which contribute to the lack of self-assurance in 
observational studies. For these reasons, the doable 
causal relationships between gut microbiota and most 
cancers nevertheless warrants similar research. 
Inspired by the application of a massive pattern 
GWAS database, we have been in a position to use 
summary-level statistics for causal inference between 
gut microbiota and glioblastoma, with the hope of 
exploiting the brain-gut axis for improved 
interpretation. 

A growing body of research found possible links 
between gut microbiota selected for our study and 

 
Figure 5. Leave-one-out for the causal association between gut microbiota and glioblastoma. (A) Bacteroidaceae; (B) Peptococcaceae; (C) Ruminococcaceae; (D) Eubacterium 
(brachy group); (E) Bacteroides; (F) Ruminiclostridium6. 
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other cancers. For instance, Patients with intrahepatic 
cholangiocarcinoma (ICC) had a greater abundance of 
family Peptostreptococcaceae than in sufferers with 
hepatocellular carcinoma or cirrhosis and in healthy 
individuals [47]. Abundance of the family of 
Ruminococcaceae was higher in patients with 
vascular invasion (VI) than in patients with ICC 
without VI [48]. Our MR results suggetsted that 
family Peptostreptococcaceae is a risk factor for 
glioblastoma. In a study of the association between 
the gut microbiome and primary liver cancer using a 
two-sample Mendelian randomization and case- 
control approach, the family Ruminococcaceae was 
found as a protective factor against hepatocellular 
liver cancer and the genus Bacteroidetes as a 
protective factor for intrahepatic cholangiocarcinoma 
in a two-sample MR study. In contrast, in case-control 
studies, healthy controls possessed higher relative 
abundance of the family Ruminococcaceae and the 
genus Bacteroidetes than patients with hepatocellular 
hepatocellular carcinoma [49]. As shown in our 
results, our MR results suggested that family 
Ruminococcaceae was also found as a protective 
factor against glioblastoma, while the genus 
Bacteroides and the family Bacteroidaceae are risk 
factors for glioblastoma. One study showed that 
genus Ruminiclostridium 6 might be potential 
pathogens with a low malignant potential in 
plasmacytoid ovarian cancer [6]. In a study of oral 
microbiota as novel biomarkers for colorectal cancer 
screening, Eubacterium (brachy group) was ideal for 
differentiating healthy controls (HCs) from colorectal 
cancer (CRC) patients [50]. And in the present study, 
we also found Eubacterium (brachy group) to be a 
risk factor for glioblastoma. The family Actinomyce-
taceae of the order Actinomycetales, which also 
includes the families Mycobacteriaceae (Mycobacte-
rium), Nocardiaceae (Nocardia, Rhodococcus), 
Corynebacteriaceae (Corynebacterium), and others, 
contains the genus Actinomyces. All belong to the 
Actinobacteria phylum [51].  

Gut microbiota and various intestinal metabo-
lites influence glioma development and progression 
through neural signaling, microglia regulation, and 
energy metabolism [52]. Gut microbiota is involved in 
regulation of glioma proliferation and immune 
response. A study comparing the changes that occur 
in gut microbiota of glioma-bearing mice compared to 
healthy mice found a significant decrease in ratio of 
the Firmicutes to the Bacteroidetes and showed 
significant differences in relative abundance of the 
Verrucomicrobia and Akkermansia. This shows that 
there is a correlation between reduced abundance or 
structural dysregulation of the bacterial flora and 
glioma progression [53]. The presence of a large 

number of immune cells and functional lymphatic 
vessels in the glioma microenvironment and the 
dysfunction of the lymphatic network constituted by 
them can promote the progression of glioma [54,55]. 
Since the gut microbiota itself can participate in 
regulating development and function of immune 
cells, and its metabolites can also influence function of 
the lymphatic network, the flora can be directly or 
indirectly involved in the regulation of glioma 
progression [56]. In addition, dysbiosis of gut 
microbiota can induce a suppressed immune response 
in the tumor microenvironment, thus increasing the 
immune escape of glioma cells and accelerating the 
progression of glioma [56,57]. Loss of flora diversity 
also leads to a defective immune function in the CNS, 
which promotes the proliferation of tumor-associated 
macrophages, mainly abnormal microglia, and 
ultimately promotes glioma progression [58]. 
Therefore, we can draw the following inference that 
modulation or transplantation of bacterial flora is 
expected to be a new means of treatment for glioma 
by modulating the immune system. 

The main gut microbiota of the organism that 
produce SCFAs are Bacteroides, Bifidobacterium, 
Propionibacterium, Lactobacillus, Clostridium, 
Roseburia, and Pseudomonas spp [59]. Amongst the 
seven gut microbiomes we explored in this study, 
Bacteroidaceae is a family of bacteria in the order 
Bacteroidetes, and the type genus of this family is 
Bacteroides [51]. In glioma, SCFAs regulate growth 
and metabolism of glioma cells by affecting 
immunity, angiogenesis, and epigenetic modifications 
of the body. In addition to SCFAs, non-SCFAs 
metabolites produced by gut microbiota metabolism 
also have a wide range of regulatory effects on 
organism. Polyamines and nitric oxide are derivatives 
of spermidine and are also produced by the 
metabolism of gut microbiota [60]. Nitric oxide, on the 
other hand, promotes tumor cell growth by inhibiting 
the JAK3-STAT5 signaling pathway, interfering with 
T cell function and inducing apoptosis [61]. 

The gut microbiota is involved in the regulation 
of multiple systems of the body by directly or 
indirectly influencing hormone secretion and immune 
response, and is involved in regulating multiple 
response responses in the glioma microenvironment. 
In addition, SCFAs and amino acids in the metabolites 
of the flora are not only involved in the immune 
response to glioma, but also in the regulation of gene 
epigenetic modifications. Therefore, gut microbiota 
and its metabolites can be used as potential targets for 
anti-glioma therapy, providing ideas and directions 
for the discovery of new targets for anti-glioma 
therapy. 
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There are advantages of this study in the 
following points: Compared to traditional observa-
tional studies, MR analysis can usually achieve 
RCT-like results that are less subject to confounding 
factors and reverse causality. Therefore, this study 
used a two-sample MR framework using genetic 
variation to assess and analyze causal relationships 
between gut microbiota and glioblastoma with 
reverse causal inference. Genetic variation in the gut 
microbiota was obtained by maximal GWAS meta- 
analysis, ensuring strength of instrumentation in the 
MR analysis. Multiple methods were used to perform 
sensitivity analyses with consistent results, and the 
robustness of our findings was demonstrated using 
MR-PRESSO and MR-Egger regression intercept tests 
to detect and exclude horizontal pleiotropy. 

There are certain limitations in this study that 
need to be noted when we interpret the results. First, 
GWAS of gut microbiota was obtained from the 
International Consortium MiBioGen, which included 
populations from different countries, mainly 
European populations, while GWAS of GBM was 
obtained from the FinnGen consortium R8 release 
data, which included populations of Finnish indivi-
duals. Due to the different exposure and outcome 
GWAS populations, demographic heterogeneity may 
have biased the results, while the generalizability of 
MR results in other populations warrants future 
investigation. Second, the limited number of GBM 
cases in the FinnGen data and the lack of specific 
typing of glioblastoma subtypes in the GWAS 
database may reduce the persuasiveness of this study 
and lead to a poor use of gut flora to explain the 
treatment response and prognosis of different 
subtypes of glioblastoma. Therefore, a further 
increase in the number of glioblastoma cases and 
subtyping of glioblastoma is needed to investigate 
potential causal relationships between gut microbiota 
and different subtypes of glioblastoma in more depth. 
Third, we lowered the P threshold between exposure 
and instrumental variables, which may increase the 
risk of violating the first hypothesis of MR. However, 
we performed an F-statistic test for each SNP and did 
not find SNPs with F-statistic values less than 10, 
indicating absence of weak SNPs in MR estimates. To 
better investigate disease pathogenesis, recent studies 
have proposed the use of multiple histological 
platforms for an integrated understanding analysis of 
disease pathogenesis in the context of complex 
interactions of genetic and environmental factors over 
time [62]. 

Conclusions 
In summary, our study comprehensively 

assessed the causal relationship between gut 

microbiota and glioblastoma. Our results suggest that 
there are one positive causal direction and six 
negative directions with glioblastoma. This study may 
provide new insights into mechanisms and 
drug-targets of gut microbiota-mediated cancer 
development. 
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