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Abstract 

Head and neck cancers (HNC) are a worldwide health problem, accounting for over 5% of all types of 
cancers. Their varied nature makes it sometimes difficult to find clear explanations for the molecular 
mechanisms that underline their onset and development. While chemio- and radiotherapy are clearly not 
to be dismissed, we cannot undervalue the effect that polyphenols - especially dietary polyphenols - can 
have in helping us to cope with this medical emergency. By influencing several different proteins involved 
in numerous different metabolic pathways, polyphenols can have a broad spectrum of biological action 
and can hopefully act synergistically to tackle down head and neck cancer. Moreover, being natural 
molecules, polyphenols does not present any side effects and can even enhance drugs efficacy, making our 
clinical therapy against head and neck cancer more and more effective. Certainly, oxidative stress plays an 
important role, altering several molecular pathways, lowering the body's defenses, and ultimately helping 
to create a microenvironment conducive to the appearance and development of the tumor. In this regard, 
the regular and constant intake of foods rich in polyphenols can help counteract the onset of oxidative 
stress, improving the health of the general population. In this review, we highlight the role of polyphenols 
in managing oxidative stress, with such positive effects that they can be considered new tools to use in 
our anti-head and neck cancer strategy. 
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1. Introduction 
Head and neck cancer (HNC) accounted for 

more than 66,920 new cases in 2023 (49,190 men and 
17,730 women), causing more than estimated 15,400 
deaths (11,210 men and 4,190 women), accounts this 
disease for about 4% of all cancers in the United States 
alone [1]. Worldwide, the incidence of these 
heterogeneous types of cancer is equally high, with 
more than 562,328 people affected in 2020, being the 
7th leading cause of deaths for all type of cancer [1,2]. 
Head and neck cancer usually arise from the mucosal 
surfaces of head and neck region, but also in salivary 
glands. HNC includes cancers that develop in the oral 

cavity, larynx, nasal cavity, and salivary glands 
(Figure 1); the worldwide 5-year median survival rate 
at 50% of cases, with the hypopharynx experiencing 
the worst outcomes [2]. 

HNC is greatly impacted by environmental 
(human papilloma virus infection is a known risk 
condition) and genetic factors, but behavioral habits 
loom large: alcohol and/or tobacco consumption are 
present in more than 80% of the total HNC cases. 
Smoking alone accounts for 42% of cancer incidence 
[3-4]; if both factors are present, the risk for oral and 
laryngeal cancer increase by 35-fold [5]. Individual’s 
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statistics can only reaffirm the urgency to really 
challenge HNC: understanding their metabolic 
pathway and interaction can go a long way in helping 
general people's health. These data help us to 
understand the magnitude of the problem, and at the 
same time make us recognize the need to study in 
detail the emergence and development of HNC: being 
able to fully understand the molecular mechanisms 
will be of great help in devising effective strategies to 
deal with these pathologies. As usual in cancer 
patients, the clinical therapy includes surgery, 
chemotherapy and radiotherapy, and where possible, 
immunotherapy, also in combination with each other. 
If HNC is diagnosed in the early developmental 
stages (I or II), a benign course of the pathology can 
reasonably be assumed; conversely, if discovered in 
the late phases (III or IV), the degree of remission of 
the disease is significantly lowered [6]. 

HNC cancer etiology is a complex phenomenon, 
that can arise from different causes and different 
prognoses in several different districts; hence, it could 
be difficult to find a common base/perspective for 
this type of cancer; yet it is possible to find common 
ground in all these cancers and the internal and 
external factor that can trigger their development. 
Particularly intriguing is trying to elucidate the role of 
oxidative stress (OS) in promoting/facilitating the 
onset and development of head and neck tumors. As 
demonstrated by numerous researchers, HNSSC is 
characterized by high genetic and metabolic 

heterogeneity, and OS plays a central role in the 
emergence and development of these tumors. The 
presence of cellular OS enhances significantly - along 
with the reactive oxygen species (ROS) overabun-
dance - the possibility of cancer arising. 

2. Head and neck cancer metabolism and 
oxidative stress 

As typical know in cancer cells, HNC character-
istically shows exponentially, disproportionate, and 
unlimited proliferation. To support this growth, these 
cells adopt a peculiar metabolism, which promotes 
and enhances glucose uptake and anaerobiotic 
glycolysis, ultimately leading to Adenosine 
triphosphate (ATP) and lactate production, the latter 
producing the well-known Warburg effect [7]. This 
choice has a profound effect on the overall cell 
metabolism, and conversely, on human body’s ability 
to effectively counteract cancer development. 
Normally, cells prefer to degrade glucose through 
aerobic glycolysis, which produces pyruvate that 
enters the mitochondria in the Tricarboxylic Acid 
Cycle (TCA) cycle, and subsequently in the electron 
chain transport, which led to the production of 32 
ATP molecules from a single glucose fraction [8]. 
Conversely, during anaerobic glycolysis, the net ATP 
production is much lower, with only 2 molecules [8].  

By adopting a very simplistic metabolism - i.e., 
bypassing the mitochondria and its aerobic 
metabolism - cancer cells can obtain the energy 

 
Figure 1. Head and neck cancer statistical incidence. HNC can appear in multiple anatomical districts: the most common are tonsils, followed by larynx for men and 
tongue for women. 
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needed for their duplication, and at the same time 
infringe our ability to inhibit cancer cells specifically. 
In fact, by abiding by any kind of cellular 
differentiation - they mostly promote mitosis, i.e., 
cellular division -, it is difficult for our strategy 
against cancer to target any kinds of molecular 
switches, that are just not employed in the cancer cells 
[7,8].  

The OS is an imbalance between the ROS 
presence and the antioxidants species at cellular level. 
There are several ways in which OS can impact cancer 
onset and development; by hypoxia regulation, but 
the aim of cancer development is to block the body's 
defense to spread the disease all over the tissue [9]. 
The ROS are chemically reactive molecules derived 
from molecular oxygen that play significant roles in 
cellular signaling and homeostasis. ROS include 
superoxide anion (O2·-), hydroxyl radical (OH·), 
hydrogen peroxide (H2O2), and singlet oxygen (·1O2) 
[10]. Under normal physiological conditions, ROS are 
produced as byproducts of cellular metabolism 
through processes such as mitochondrial respiration, 
enzymatic reactions, and immune responses [7-9]. 
ROS function as signaling molecules involved in 
cellular processes such as proliferation, differen-
tiation, and immune responses [9]. An excess of 
pro-oxidant species production versus antioxidant 
species provokes OS: in fact, ROS excessive 
production could be the byproduct of pathological 
conditions, particularly of OS situations [8]. For the 
oral cavity, one of the most important ROS sources is 
i.e., periodontal inflammation [10]. Harmful habits 
such as cigarette smoke, and drug use, plays a 
prominent role in ROS production; also, diet - namely, 
ethanol intake - and high fat and/or high protein diet 
seems to favor ROS production [10]. Also, dental 
treatment with laser light, ultraviolet light, ozone, etc., 
as well the materials used in dental practice, such as 
dental composites, can contribute to the ROS 
production [11]. 

3. Oxidative stress and its importance in 
HNC tumor development 

To fully perform their normal biological and 
metabolic activity, cells need to effectively control 
ROS production. DNA maintenance, protein 
regulation, transcription factors activation, immunity 
system, energy metabolism, pathway control, cell 
growth, and differentiation, and ultimately cell 
division (in a controlled manner) or apoptosis, are all 
biological processes that can be negatively influenced 
by an excess of ROS [12]. Is well know that ROS 
presence does not have to be considered only as a 
harmful effect: experimental research has extensively 
demonstrated that in physiological conditions ROS 

signaling as a second messenger in cells is crucial for a 
variety of biological actions, such as gene expression, 
signal transduction, and receptors activation [12-13], 
and also wound healing, tissue regeneration and 
protection from pathogens [14-15]. However, if ROS 
levels increase above the usual threshold can lead to 
serious nefarious consequences for the cell: just the 
modification in the macromolecules - proteins 
oxidation, nucleic acids damage, carbohydrates, and 
lipid peroxidation - could render impossible a healthy 
cell life; hence, maintaining ROS levels at adequate 
levels becomes an essential necessity for the cell 
(Figure 2).  

A major part of these molecules is a byproduct of 
oxidative metabolism, usually generated in the 
mitochondria. Oxygen is a crucial factor for human 
metabolism in general: oxidative phosphorylation, the 
role of multicopper oxidase enzyme (MCO) [16], 
arachidonic acid pathway - lipoxygenases (LOX), and 
cyclooxygenases (COX) -, and significantly, 
inflammatory pathway and particularly endothelial 
cells require molecular oxygen to be completed 
[17-19]. Regulating ROS homeostasis is a key factor 
for cellular well-being: the lipid and carbohydrate 
peroxidation, protein oxidation, DNA damages and 
inflammation state due to ROS overproduction could 
facilitate the development of head and neck cancer 
[20]. ROS can also cause an imbalance in mitochon-
drial metabolism, causing change in membrane 
permeability and halting the ATP production, which 
in turn cause cell cycle alterations, ultimately leading 
to the cancer appearance (Figure 2) [21]. Cells 
normally cope with an excess of ROS through their 
scavenging capacity; however, in stressful conditions 
this ability falls short of matching the mitochondrial 
production of ROS [22-23]. 

The fight against cancer is truly an uphill battle: 
so much heterogeneity in the causes, and 
development and symptoms make it extremely 
complex and difficult to find a single way to 
counteract it. However, developing and fortifying our 
protective mechanisms against cancer insurgence - 
chemoprevention - can have a very long way in 
helping us against this powerful enemy. Introduced 
by Wattenberg [24], the concept of chemoprevention 
lies on the basis that several natural substances seem 
to display an ability to prevent cancer development. 
Interestingly, polyphenols molecules are a class of 
molecules that can have a positive effect on cancer 
onset and development, by affecting several distinct 
metabolic pathways, hence maybe having a 
synergistic effect: cell cycle, apoptosis, cell division, 
energy metabolism, DNA maintenance, are just some 
of the mechanisms of action of polyphenols in our 
metabolism [25-29]. There is a clear relationship 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

296 

between polyphenol intake and its positive effect on 
our health: the scientific evidence is stunningly clear, 
regarding the onset and development of several 
different pathologies, from cardiovascular diseases, 
neurogenerative disorders, obesity, diabetes, 
inflammatory disease, aging, and of course many 
different types of cancer, including HNC [30-37]. 

4. Polyphenols: structure and function 
Polyphenols group encompass more than 10,000 

molecules: their classification could be operated in 
several ways, for example by the number of their 
phenolic groups, or by dividing them into flavonoids 
and non-flavonoids; in any case, all the molecules 
classified as polyphenols possess at least one aromatic 
ring groups with one or more hydroxyl functional 
groups attached (Figure 3) [38-39]. Polyphenols are 
classified into different subclasses, including 
flavonoids, phenolic acids, stilbenes, and lignans, each 
with unique chemical structures and properties [40]. 

The therapeutic potential of several different 
polyphenols molecules has been extensively studied: 
they are mainly present in the vegetables and fruits 
groups and seems totally conceivable that are at least 
partially responsible for the benefit of a plant-based 

diet. Flavonoids are present mainly in vegetables, 
cereals, fruits, and legumes. Quercetin is a ubiquitous 
flavonoid present in a large variety of fruits (apples, 
grapes, olives, citrus fruits, berries), vegetables 
(tomatoes, onions, broccoli, capers), beverages (tea 
and red wine), and herbal extracts; however, its 
concentration in all species is quite low [41]. Ellagic 
acid is found in quercus species and particularly in 
pomegranates [42]. Hesperidin, a flavanone glycoside, 
is the most abundant polyphenol in citrus fruits [43]. 
Olive oil, a food often cited as an example as of source 
of good-for-health unsaturated fatty acids, contains a 
fair amount of hydroxytyrosol (HT) and oleuropein, 
polyphenols belonging to the catechol family [44]. For 
a more complete list of foods with the highest 
polyphenol content, please refer to Perez-Jimenez et 
al. [45]. 

The main representatives of the catechin 
subfamily are epigallocatechin and epigallocatechin 
gallate (EGCG), which can be harvested from many 
types of herbs, fruits, legumes, and algae. Due to their 
relatively high content in berries, tea – especially 
green and white tea - [46], is also an important source 
of catechins [47]. Resveratrol is one of the most 
studied molecules of the stilbene subfamily, which is 

 

 
Figure 2. ROS molecular mechanism and HNC cancer. ROS overabundance in cell can have serious nefarious consequences, disrupting macromolecules and altering multiple 
biological pathways, ultimately leading to malignant cell transformation and cancer development. 
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usually found in grapes, and consequently in red 
wine [48]. Therefore, due to their widespread 
distribution in fruits, cereals, legumes, and 
vegetables, and ultimately in all plant-based food, 
polyphenols are the ideal candidate to help the 
general population cope with oxidative stress 
situations: by adhering to the recommended 
guidelines, for 5 portions of fruit and vegetables per 
day, polyphenols intake ingested could contribute to 
the individual’s health protection [49]. However, it is 
impossible to correlate the intake of polyphenols 
present in a peculiar food and correctly evaluate the 
subsequent amount of polyphenols absorbed: besides 
environmental factors, such as light, temperature, 
water availability, nutrient status, and biotic stress, 
seasoning, cultivar, food processing - cooking, frying, 
toasting, etc. - can significantly affect polyphenol 
biosynthesis in plants. These factors modulate the 
expression of key biosynthetic genes and the 
accumulation of specific polyphenols, and ultimately 
affect our ability to estimate their bioavailability, 
which could render ineffective polyphenol’s 
therapeutic potential in human metabolism. Hence, 
assessing an individual adequate dietary intake needs 
to consider polyphenol’s bioavailability, which is 
different for every molecule, and is a very hard 
parameter to estimate: in fact, it is deeply affected by 
intestinal absorption, which can range from 3% of 
chlorogenic acid up to 43% of caffeic acid [50-51].  

Usually, polyphenols in foods – except for the 
flavanols members - are in conjugated form (with 
carbohydrates), altering their solubility, digestion, 
and absorption properties, favoring their degradation 
and greatly limiting their absorption [52]. At this 
stage, it is extremely important to underline the role 
played by the intestinal microbiota: the biotrans-
formation reactions of polyphenols in vivo, - i.e., 
sulfoxide reductase, nitro reductase, glucuronosyl-
transferase - are all microbial enzymes [53-54] and, 
consequently, microbiota community composition 
can greatly influence their function [55]. 

5. Polyphenols antioxidant activities 
The presence of antioxidant molecules in cells 

could be defined as a key factor regarding our health: 
scientific literature has extensively proved that they 
prevent DNA damage, including the mitochondrial 
genome, thus positively affecting mitochondria 
biogenesis [56]. Polyphenols play a role in several 
molecular pathways that help us to manage oxidative 
stress. These pathways include enzymatic activity, 
metabolic regulation, membrane integrity, signal 
transduction, genetic activation, and epigenetic 
modifications. All of these are biological mechanisms 
involving polyphenols. In Figure 4, were illustrated 
some of the biological actions mediated by 
polyphenols in our metabolism. 

 
 

 
Figure 3. The chemical structure of different food polyphenols. 
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Figure 4. The role of polyphenols and human health. Dietary polyphenols can impact several proteins involved in many different aspects of our metabolism, including many 
pathways that are altered in HNC cancer cells. 

 
By interacting with non-polar compounds found 

in the hydrophobic inner membrane layer, 
polyphenols support the proper functioning of 
membranes [57]. This interaction helps preserve the 
rate of lipid and/or membrane protein oxidation. A 
study on hyperlipidemic rats demonstrated that the 
extract of Sempervivum tectorum exhibited antioxi-
dant activity, protecting the organism against lipid 
peroxidation, and ultimately stabilizing the mem-
branes [58]. These molecular interactions provide 
insights into the polyphenol’s beneficial effects. 

The documented evidence shows that 
polyphenols can interact with endothelial nitric oxide 
synthases (eNOS). They can modulate nitric oxide 
production, signaling, and metabolism, thus 
regulating eNOS expression and activity [59]. Oxida-
tive stress can reduce nitric oxide bioavailability, 
which in turn contributes to endothelial dysfunction, 
a characteristic feature of cardiovascular disease. 
Bacterial infection can further worsen the oxidative 
injury by stimulating inducible NOS (iNOS) 
expression. However, polyphenols can improve 
macrophage function by inhibiting lipopolysac-
charide-induced iNOS expression, thereby reducing 
oxidative stress [60]. Some in vitro studies, 
demonstrated that the total polyphenols derived from 
Allium cepa possess the capability to inhibit the 
activity of xanthine oxidase (XO) [61]. This 
antioxidant activity of flavanols is significant because 
XO activity has been associated with oxidative 
stress-related diseases, particularly ischemia [62], as 
the stimulation of XO can result in excessive 
production of free radicals. 

Another important target for the antioxidant 
activity of polyphenols is NADPH oxidase (NOX). 
The NOX family comprises multiple members present 
in all human tissues and serves as one of the primary 
producers of ROS in various cells. In neutrophils and 
macrophages, NOX plays a crucial role in the 
oxidative burst, which involves the production of 
ROS for pathogen elimination [63]. The polyphenol 
Curcumin, can modulate NOX activity, as observed in 
supplementation studies using mouse C2C12 
myoblasts, where it directly inhibited NADPH 
oxidase [64]. Additionally, it has been demonstrated 
that resveratrol could act as an O2*- scavenger, 
effectively and directly reducing ROS production 
mediated by NOX [65]. 

Advanced glycation end products (AGEs) are 
obviously stimulated by ROS, as well as the protein 
kinase C (PKC) pathways, leading to an activation of 
gluconeogenesis and lipogenesis. Experimental 
studies have demonstrated that polyphenols have the 
capability to inhibit SGLT1, thereby limiting the 
intestinal absorption of carbohydrates [66]. Moreover, 
when PKC is overexpressed, it can exacerbate 
oxidative stress by stimulating NADPH-oxidases and 
lipoxygenases, which are enzymes known to generate 
ROS, as evidenced in human platelet suspensions [67]. 

The arachidonic acid pathway plays a crucial 
role in different diseases, including cancer develop-
ment, arthritis, asthma, and general inflammatory 
processes [68]. The breakdown of arachidonic acid 
through multiple enzymes, particularly COX and 
LOX, leads to the production of prostaglandins and 
leukotrienes, which are key factors in managing the 
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inflammatory process. Polyphenol supplementation 
can influence the metabolism and pathway of 
arachidonic acid. For example, quercetin can 
modulate the activity of COX, LOX, phospholipase 
A2s (PLA2s), and cytochrome P450 (CYP) [68]. 
Similarly, curcumin exhibits potent inhibition of 
arachidonic acid-induced inflammation in vivo. 
Therefore, the action of polyphenols ultimately 
reduces the progression of inflammation, playing a 
crucial role in preventing adverse health outcomes. 

Oxidative stress encompasses many modifica-
tions that affect energy metabolism [69] and its 
regulation, as well as gene expression [70]. It is not 
surprising that a wide range of genes, including 
ferritin [71-72], collagen [73], and transcription factors 
such as CREB [74] and STAT3 [75], along with AMPK 
[76] and several proto-oncogenes [77], are transcrip-
tional activated in response to increased cellular 
oxidation. Given their antioxidant capacity, 
polyphenols can contribute to individual antioxidant 
and anti-inflammatory defense through different 
mechanisms: a) by inhibiting the production of ROS 
and acting as scavengers of free radicals [78-80]; b) by 
stimulating the production of prostaglandins and 
leukotrienes, which are anti-inflammatory molecules 
[81]; c) by reducing levels of pro-inflammatory 
cytokines [82]. The TNF-α, IL-6, and serum amyloid 
A, well-known inflammatory marker levels, are 
significantly reduced by using a blend of green tea 
polyphenols, comparable to the effects of 
sulfasalazine, the standard drug for patients with 
inflammatory bowel disease (IBD) [83].  

Animal models with acute or chronic inflam-
mation have been used to test several polyphenols 
molecules activity: kaempferol, resveratrol, HT, 
curcumin, and genistein have displayed anti- 
inflammatory activities in both animal models [84]. 
Quercetin is beneficial for both chronic and acute 
inflammatory processes, while curcumin and green 
tea have been utilized in the treatment of 
stress-related neurodegenerative diseases [85-86]. 
Polyphenols can potentially mitigate inflammatory 
processes through enzymatic and signaling systems, 
such as tyrosine and serine-threonine protein kinases, 
which regulate anti-inflammatory cell activation, 
growth, and differentiation (e.g., T cell proliferation, B 
lymphocyte activation), as well as cytokine 
production [87]. 

Moreover, polyphenols can induce the 
expression of antioxidant enzymes such as superoxide 
dismutase (SOD), catalase, and glutathione (GSH) 
peroxidase (Px) [88]. This effect has been 
demonstrated in both in vitro and in vivo experiments 
using resveratrol, specifically in intestinal epithelial 
cells and porcine enterocytes isolated from the 

jejunum (IPEC-J2) [89]. 

6. The Overall polyphenols anticancer 
activities in HNC 

The therapeutic use of polyphenols against 
cancer is based on their diverse range of biological 
activities, encompassing antioxidant effects, interact-
ions with cellular receptors, apoptosis induction, 
modulation of cell signaling, alterations in cell cycle, 
regulation of cell proliferation, inhibition of 
angiogenesis, influence on inflammation and the 
immune system, epigenetic modifications, and 
modulation of gene expression [90]. Polyphenols can 
also impact our health by influencing conditions such 
as diabetes, metabolic syndrome, hypertension, 
cardiovascular disease, and the production of 
metabolites by gut microbiota [91].  

The scientific literature extensively deals with 
the potential anticancer activity of polyphenols on 
various types of cancer cells, including human colon 
cancer, lung cancer, breast cancer, ovarian cancer, and 
hepatocellular cell lines [92-96]. Polyphenol extracts 
have demonstrated effectiveness in preventing skin 
cancer and have shown utility in the treatment of this 
highly aggressive form of cutaneous cancer [97]. A 
study conducted on HNC revealed significant growth 
inhibition when a blend of polyphenols (quercetin, 
curcumin, green tea, and resveratrol) was employed 
[98]. 

Dietary phytochemicals can display their 
anticancer potential through different molecular 
mechanisms; it is evident that polyphenols can 
interact with and modulate different signaling 
pathways involved in the onset and development of 
cancer. Therefore, the development of anti-cancer 
therapies based on the utilization of polyphenols 
holds promising potential for cancer treatment [99]. 

The epidermal growth factor receptor (EGFR), is 
deeply involved in HNC onset and development: 
according to the recent statistics, more than 90% of all 
HNC display an EGFR overexpression; moreover, 
high EGFR levels are inversely correlated with poor 
prognosis and cancer’s patient survival [100]. EGFR 
belongs to the ErbB family, which include four 
members (ErbB1-4): many different polyphenols 
molecules possess well-documented abilities to exert 
their influence upon members of the ErbB receptor 
family in various cancer cell types. Oleuropein and 
HT emerge as transformative agents capable of 
degrading EGFR in several cancer cell lines, as well as 
quercetin, apigenin, EGCG, and resveratrol. 
Curcumin indeed surpasses the effectiveness of the 
gefitinib drug in inhibiting colon cancer cell growth, 
positioning it as a potent agent for suppressing tumor 
proliferation [101].  
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Distinguishing between different signaling 
pathways can be a challenging task as many of them 
regulate similar cellular processes, such as cell 
growth, differentiation, and proliferation, albeit with 
different involved proteins. Thus, attempting to 
elucidate the role of each pathway could be debatable. 
Moreover, these pathways can interact and exhibit 
crosstalk. For instance, the nuclear factor-kappaB 
(NF-κB), and Hedgehog signaling play crucial roles in 
determining cellular neoplastic transformation 
[102-103]. 

6.1. Polyphenols and HH/GLI pathway 
The Hedgehog pathway (HH) serves as a critical 

regulator of cell differentiation and growth, 
particularly during embryonic stages. Recent studies 
have highlighted an overactivation of this pathway in 
several human cancers [104]. The cascade pathway is 
governed by the interaction of three components: the 
sonic hedgehog (Shh) ligand, its pathway repressor 
Patched 1 (Ptch1), and the pathway activator 
smoothened (Smo), a transmembrane G-protein. 
Normally, Smo is negatively regulated by Ptch1. 
Unlike other signaling pathways, HH typically 
operates under negative regulation. When Shh binds 
to Ptch1, it activates Smo, leading to the nuclear 
translocation of GL1, a zinc finger transcriptionally 
repressive factor, resulting in cellular proliferation 
[105]. Dysregulation of the HH signaling pathway has 
been observed as a clinical hallmark in the 
development and progression of various cancer types, 
including gastrointestinal, prostate, lung, breast, and 
brain tumors [106-110]. 

Several different polyphenols molecules have 
individually demonstrated the ability to regulate the 
HH/GLI pathway. Curcumin induces cell cycle arrest 
and apoptosis through the HH signaling pathway by 
inhibiting the transcriptional activity of GL1. 
Genistein can block MCF-7 breast cancer cells by 
inhibition of Sonic hedgehog activity [111], and 
apigenin impact HH/GLI pathway in malignant 
mesothelioma mouse cell [112]. EGCG halt the growth 
and metastasis of human chondrosarcoma cells. In 
liver of cancer-induced mice, oral administration of 
EGCG significantly reduces the expression of Smo 
and GL1 [113]. Resveratrol effectively suppresses 
hypoxia-induced HH stimulation in pancreatic cancer 
cells [114]. Both EGCG and theaflavin can effectively 
counteract the carcinogenic effects of N-nitrosodi-
ethylamine (NDEA) in mice by inhibiting the catalytic 
transformation of PTCH1, thereby preventing the 
activation of the HH signaling pathway [115]. 

6.2 NF-κB pathway modulation 
The NF-κB plays a role in different processes, 

including inflammation, immunoregulation, apop-
tosis, cell growth, and proliferation. NF-κB is a family 
of transcription factors consisting of several members, 
such as NF-κB2 p52, NF-κB1 p50, c-Rel, RelA/p65, 
and RelB [116]. These proteins can form homo/ 
heterodimers and bind to specific DNA sequences 
known as their target sites. All family members 
possess a conserved amino acid domain called the Rel 
Homology Domain (RHD), which is essential for 
dimerization, inhibitors binding (IkB), nuclear 
translocation, and DNA binding.  

Normally, NF-κB is bound to its inhibitor IkB, 
thus remaining confined to the cytoplasm: to be 
activated NF-κB is phosphorylated by the IκB kinase 
(IKK) complex, which leads to the IkB degradation 
and allows the transcription factor translocation into 
the nucleus [117]. Once in the nucleus, NF-κB 
regulates gene expression, activating different genes 
depending on its composition, with many involved in 
inflammation, cell growth, and differentiation. 
Supplementation with green tea polyphenols can 
inhibit mitogen-activated protein kinase (MAPK or 
MAP kinase) signaling in human umbilical vein 
endothelial cells (HUVECs) that can participate in the 
regulation of NF-κB transcriptional activity [118]. 
Catechins were able to suppress NF-κB signaling in a 
rat model by preventing NF-κB nucleus translocation 
[119]; also apigenin and genistein blocked NF-κB 
interaction with DNA targeting sequence in a murine 
model [120]. 

6.3 Polyphenol, cell growth arrest and 
apoptosis 

Apoptosis, a programmed cell death, is a defense 
mechanism activated when cells are damaged beyond 
repair, preserving the organism from aging, infection, 
or other degenerative disease [121]. This genetically 
regulated process is particularly crucial in countering 
cancer, which is characterized by uncontrolled cell 
division: indeed, several anticancer drugs induce 
apoptosis, an essential feature to prevent the 
development of neoplastic conditions. The apoptotic 
process involves distinct pathways with different 
protein, and can be triggered either by intrinsic 
factors, such as extensive DNA damage, ischemia, 
oxidative stress, or infections, or by extrinsic factors, 
which involve the interaction of specific membrane 
receptors with pro-apoptotic molecules produced 
elsewhere. Both intrinsic and extrinsic pathways 
require the activation of the proteolytic caspase 
cascade, ultimately dismantling and eliminating the 
dying cell [122]. 

Olive oil is widely recognized for its antioxidant 
properties but can also be used against cancer. Several 
studies have shown that oleuropein decreases cancer 
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cell viability and exhibits pro-apoptotic effects 
through the p53-dependent pathway and by 
activating BAX and Bcl-2 genes in breast cancer cells 
(MCF-7) [123]. HT can also influence cell cycle 
progression by arresting cancer cells in the G0/G1 
phase and reducing cyclin D1 levels.  

In ovarian cancer cells curcumin - in a 
p53-independent way - can induce apoptosis through 
the activation of p38 kinase, downregulation of Bcl-2 
expression, and modulation of Akt signaling [124]. In 
the MOLT-4 human leukemia cell line, quercetin 
interacts with the PI3K-dependent/AKT pathway, 
leading to a decrease in mammalian target of 
rapamycin (mTOR) activity. Consequently, the 
anti-apoptotic protein Bcl-2 is downregulated in 
cancer cells [125]. 

Synergistic effects of polyphenols have been 
observed in various biological processes. Curcumin 
can induce apoptosis in pancreatic cancer cells line, 
both in vitro and in vivo [126]. Quercetin and ellagic 
acid demonstrate synergistic effects in p53 
phosphorylation, stimulating BAX expression and 
translocation of p53 protein into mitochondria, 
ultimately resulting in pro-apoptotic effects. Similar 
synergistic effects on p53 phosphorylation were 
observed when treating human lung cancer cells with 
isoflavones and curcumin, leading to decreased cell 
growth and proliferation [127]. Resveratrol exhibits 
potential effectiveness in preventing cancer develop-
ment in several cancer cell lines, including prostate, 
breast, stomach, colon, lung, intestinal, thyroid, and 
pancreatic cancers [125]. Resveratrol induces 
apoptosis in human leukemic cells by decreasing Akt 
activation through Ras downregulation [128].  

Although resveratrol shows promising 
anti-cancer potential, its efficacy has been limited to 
tumors with direct contact, such as skin cancers or 
gastrointestinal tract cancers, rather than human solid 
tumor cells, due to its poor bioavailability [128]. 

6.4 Polyphenols modulation of p53 
Approximately half of all human tumors display 

an altered functioning of p53, a crucial regulator in 
multiple human metabolic pathways [129]. In fact, 
p53 plays a vital role by regulating DNA maintenance 
and repair, halting cell cycle progression to assess 
DNA damage, and initiates apoptosis. More than 100 
genes have been identified as targets of p53, 
encompassing various aspects of cellular metabolism. 
Post-translational modifications such as acetylation, 
methylation, phosphorylation, and ubiquitination can 
modulate p53 activity in response to a wide range of 
stresses [130]. 

Therefore, it is not surprising that p53 can be 
regulated through various mechanisms, either 

positively or negatively, involving different pathways 
and proteins. One common pathway involved in p53 
inhibition is the direct interaction between p53 and 
the Mouse double minute 2 homolog (MDM2). The 
MDM2 carries out its activity through several 
mechanisms: 1) facilitating proteasome-mediated 
degradation of p53; 2) preventing p53 from binding to 
its DNA target sequence; and 3) promoting the export 
of p53 out of the nucleus [131]. Experimental evidence 
suggests that polyphenols can bind to MDM2 through 
stable hydrophobic interactions, preventing the 
inactivation of p53 [132]. 

EGCG, resveratrol, curcumin, genistein, and 
quercetin can upregulate p53 expression, inhibit cell 
growth and proliferation in several human cancer cell 
lines by decreasing cyclins D1 and D2, increasing p21 
and BAX synthesis, and triggering apoptosis 
[133-134]. Specifically, EGCG can directly regulate p53 
by stimulating its phosphorylation and acetylation, 
leading to enhanced stability and activity of p53 [135]. 
Besides, p53 can be targeted by the theaflavin's 
biological activity, leading to positively telomerase 
regulation through inhibition of Telomerase reverse 
transcriptase (hTERT), a critical factor for cell life 
expectancy [136]. Moreover, theaflavin - through p53 
pathways - can downregulate glycolysis and angio-
genesis – suppressing vascular-endothelial growth 
factor (VEGF) expression -, promoting apoptosis 
through Bcl-2 inhibition [137].  

Numerous studies have suggested that 
resveratrol can triggers apoptosis in cancer cell in a 
p53-dependent manner, via MAPK activation [138]. 
Therefore, polyphenols administration can modulate 
p53, regulating various aspects of cancer progression, 
including initiation, proliferation, survival, migration, 
angiogenesis, and metastasis. Importantly, the 
combination of polyphenols with chemotherapy or 
radiotherapy can synergistically upregulate p53 [139]. 

6.5 Epigenetic and DNA modification 
Preventing cancer initiation and progression 

often could significate preserve the stability and 
integrity of our genome: in this regard, epigenetic 
regulation and gene silencing/activation plays a 
pivotal role for cell development and differentiation. 
DNA methylation and chromatin modifications, 
particularly histone acetylation, are crucial for proper 
development and differentiation, but dysregulation 
can lead to severe human pathologies, cancer 
included. The tumor microenvironment acts as an 
amplifier for epigenetic modifications, facilitating 
early and frequent remodeling of DNA functionality, 
and promoting cancerous transformation [140]. 
Targeting epigenetic modifiers could be a promising 
strategy for anticancer activity, given the potential 
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reversibility of these changes.  
Recent studies have suggested that polyphenols 

may have the ability to regulate epigenetic processes, 
which holds significant clinical and therapeutic 
implications [141]. In ER-positive MCF-7 breast cancer 
cells, a combination of resveratrol and vitamin D can 
downregulate DNA methyltransferases (DNMT), 
leading to reduced promoter methylation of the 
phosphatase and tensin homolog (PTEN) gene and 
enabling protein transcription [142]. Resveratrol 
treatment in breast cancer cells has been associated 
with DNA hypomethylation based on a genome-wide 
survey [143]. Interestingly, combining resveratrol 
with another polyphenol, pterostilbene, reduces 
methylation at the ERa gene promoter [144].  

Undoubtedly, dietary bioactive compounds like 
polyphenols can act as epigenetic modifiers, 
establishing a direct link between food and 
epigenetics, thereby presenting intriguing new 
therapeutic possibilities. 

6.6 miRNAs modulation in HNC 
MicroRNAs (miRNAs) are a class of small, 

single-stranded non-coding RNAs that plays a crucial 
role in post-transcriptional control: it is estimated that 
they regulate the expression of at least 30% of 
mammalian genes [145]. Through binding to target 
mRNAs, miRNAs can downregulate gene expression, 
effectively regulating several cellular processes, 
including cell differentiation, growth, proliferation, 
and apoptosis; alterations in miRNA expression are 
considered critical in cancer initiation and 
development [146]. 

Curcumin ability to modulate miRNAs in cancer 
cells has been recently demonstrated: after treating 
pancreatic cancer cells with curcumin (10 μM), 
significant changes in the expression of 29 miRNAs 
were observed, with 11 miRNAs upregulated and 18 
miRNAs downregulated [147]. One of the miRNAs 
affected by curcumin treatment was miR-22, known 
for its tumor-suppressive function. Curcumin- 
induced upregulation of miR-22 effectively inhibited 
its target genes. These findings highlight the 
modulation of miRNAs by curcumin as an important 
mechanism underlying its biological effects. 
Furthermore, curcumin has been shown to induce 
DNA hypomethylation and inhibit several oncogenes, 
including histone-modifying proteins, in hepato-
cellular carcinoma cells [148].  

Resveratrol and genistein are also capable of 
reducing carcinogenesis through the modulation of 
miRNAs. Additionally, EGCG not only impacts DNA 
methylation but also histone acetylation, influencing 
the enzymatic activities of histone deacetylases 
(HDACs). This EGCG capacity may explain its 

chemopreventive effect, as it modulates inflammation 
in cancer cells. 

7. Polyphenols Therapeutic Potential in 
HNC: Epidemiological and Clinical 
Studies 

Many epidemiological studies suggest that diets 
particularly rich in fruits and vegetables have cancer 
preventive properties [149-151]. Polyphenols are 
deemed responsible, at least in part, for these 
beneficial effects, thanks to their anticancer activity 
both in animal and human models [152-153]. 

So far, very few studies have tested polyphenols 
administration in HNC. Searching the 
“Clinicaltrials.gov” database (last search: 5 August 
2023), using the terms [head and neck cancer] and 
[polyphenols report], only 5 studies evaluate the use 
of polyphenols in HNC (Table 1).  

 

Table 1. Clinical trials with polyphenol supplementation in head 
and neck cancer patients. 

HNC  NCT Polyphenol 
Supplementation 

Clinical Relevance  

Oral 
leukoplakia 

NCT00176566 Lozenge intake (green 
tea preparation) 

A Phase II Trial to Assess 
the Effects of Green Tea in 
Oral Leukoplakia 

Oral cancer – 
gum disease 

NCT01514552 Strawberry gummy and 
placebo control  

Use of Functional 
Confections in Promoting 
Oral Health 

Carcinoma, 
Squamous Cell 

NCT01496521 Drug: aspirin (100mg 6 
months); Dietary 
Supplement: Tea 
polyphenols (300mg 6 
months) 

Chemoprevention of 
Esophageal Squamous 
Cell Carcinoma (ESCC) 
with aspirin and tea 
polyphenols 

Gastric and 
Esophageal 
Cancer 

NCT04027088 Dietary supplement: 
arginine, omega 3, olive 
oil polyphenols, 
carnitine and 
antioxidants 

Effect of preoperative 
immunonutrition in upper 
digestive tract 

Premalignant 
lesions of 
HNC 

NCT01116336 Green tea polyphenon 
E  

Phase I chemoprevention 
trial with green tea 
polyphenon e & erlotinib 
in patients with 
premalignant lesions of 
HNC 

 
Instead, are enlisted 30 clinical studies involving 

the administration of polyphenols in various types of 
cancer and 50 clinical studies using polyphenols to 
counteract oxidative stress (Table 2 and Table 3, 
respectively).  

 

Table 2. Selected clinical trials with polyphenol supplementation 
in cancer disease. 

Conditions  NCT Polyphenol Clinical Relevance  
Recurrent 
Prostate 
Cancer 

NCT01912820 Quercetin Effect of Quercetin in prostate 
tissue from patients with 
prostate cancer  

Prostate 
Cancer 

NCT00685516 green tea, 
decaffeinated black 
tea 

Green Tea, Black Tea in 
treating patients with prostate 
cancer undergoing surgery 

Prostate 
Cancer 

NCT00676780 Drug: Polyphenon 
E (EGCG) 

Green tea extract and prostate 
cancer 

Colorectal NCT02439580 Annona muricata Effect of A. Muricata leaves on 
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Cancer extract colorectal cancer patients and 
colorectal cancer cells 

Incident 
Breast Cancer 

NCT00949923 Dietary 
Supplement: tea 
capsula 

Green Tea in Breast Cancer 
Patients 

Cervical 
Cancer 
 

NCT03994055 Omega-3 fatty 
acids, Probiotics 
Antioxidants 
Soluble fiber 

Effect of an 
Anti-inflammatory Diet on 
Patients with Cervical Cancer 

Interstitial 
Pneumonia 
Neoplasms 
Malignant 

NCT05758571 Drug: EGCG Oxygen atomizing inhalation 
of EGCG in the treatment 
interstitial pneumonia in 
cancer patients 

Advanced 
Lung Cancer 

NCT03751592 Drug: Chlorogenic 
acid 

Phase Ib/IIa Studies of 
Chlorogenic acid for injection 
for safety and efficacy of 
advanced lung cancer 

Skin Cancer NCT01032031 Dietary 
Supplement: Green 
tea + 
vitamin C high 
dose 

The Effect of Green Tea and 
Vitamin C on Skin Health 

Non-small 
Cell Lung 
Cancer 

NCT01426620 Dietary 
Supplement: 
Blueberry powder 

Standard chemotherapy with 
blueberry powder in nonsmall 
cell lung cancer 

Colorectal 
Serrated  
Adenomas 
 

NCT01360320 Dietary 
Supplement: Green 
tea extract of 
Camellia Sinensis 

Minimizing the risk of 
metachronous adenomas of 
the colorectum with green tea 
extract -MIRACLE-study 

 

 

Table 3. Selected clinical trials with polyphenol supplementation 
in oxidative stress conditions. 

Conditions  NCT Polyphenol Clinical Relevance  
CV disease and 
oxidative stress 

NCT01541826 Chokeberry extract 
(250mgx2 for 12 
weeks)  

Study of Chokeberry to 
Reduce Cardiovascular 
Disease Risk in Former 
Smokers 

Oxidative stress 
and inflammation 

NCT01780922 Cranberry extract 
beverage 

Effect of a Dose of 
Cranberry Beverage on 
Inflammation and 
Oxidative Stress 

Oxidative stress 
and insulin 
resistant 

NCT02479035 Red raspberry meal Raspberries on Insulin 
Action and Oxidative 
Stress 

Cardiomyopathy 
and oxidative 
stress 

NCT01102140 POMx pomegranate 
polyphenol extract 

The Impact of 
Pomegranate Extract on 
Chronic 
Cardiomyopathy 
Complicated by Renal 
Insufficiency 
(ImPrOVE): a Pilot Study 

Metabolic 
syndrome, 
oxidative stress, 
systemic 
inflammation 

NCT03265184 Green coffee extract Green Coffee Extract 
Supplementation and 
Oxidative Stress, 
Systemic and Vascular 
Inflammation 

Oxidative stress, 
inflammation 

NCT02494739 Yogurt enriched 
with polyphenols 

Antioxidant and 
Anti-inflammatory 
Effects of Yogurt 
Enriched With 
Polyphenols 

Vascular 
oxidative stress  

NCT03053986 Apple polyphenols Effect of Apple 
Polyphenols on Vascular 
Oxidative Stress and 
Endothelium Function 
Study (APP trial_2016) 

Oxidative stress in 
diabetic patients 

NCT00682149 PomGT (0.5 g 
pomegranate 
extracts, 0.3 g green 
tea and 60 mg vit. C) 

Effects of Polyphenol 
Containing Antioxidants 
on Oxidative Stress in 
Diabetic Patients 

Oxidative stress NCT00721643 Angel’s plant – dark 
green leafy 
vegetable  

Absorption Kinetics of 
Polyphenols in Angel's 
Plant (Angelica Keiskei) 

Oxidative stress, 
exercise recovery 

NCT04959006 Antioxidant 
supplement 

Investigating a Natural 
Antioxidant Food 

Product on Oxidative 
Stress in Recreationally 
Active Participants 

Maternal and fetal 
oxidative stress 

NCT01584323 Pomegranate pills Pomegranate to Improve 
Outcome in Pregnancies 
Complicated With 
Preterm Premature 
Rupture of the 
Membranes 

Oxidative stress, 
gestational 
diabetes 

NCT05393843 Omega-3 fatty acids, 
anthocyanins and 
alpha-cyclodextrins 

Prevention of Maternal 
and Fetal Metabolic 
Complications With Diet 
and Nutraceutical 
Supplementation in 
Pregnant Women 
Affected by Gestational 
Diabetes: a Randomized, 
Double-blind Placebo 
Controlled Trial. 

Oxidative stress NCT03186573 Grape juice Effect of Grape Juice 
Consumption on the 
Parameters of Oxidative 
Stress and Muscle 
Fatigue in Judo Athletes 

Oxidative stress, 
cardiometabolic 
risk 

NCT05771571 Olive oil, plus 
orange peel extract 

Investigation of the 
Acute Effect of Novel 
Olive Oil on 
Postprandial Oxidative 
Stress Biomarkers 
(BioliveCT) 

Oxidative stress,  
CV disease, 
inflammation,  

NCT01674231 Grape (freeze-dried 
whole grape 
powder) 

The Effects Grapes on 
Health Indices 

Chronic 
obstructive 
pulmonary 
disease, oxidative 
stress 

NCT03989271 Quercetin Biological Effects of 
Quercetin in COPD 

Oxidative Stress,  
CV Diseases 

NCT02295878 Dietary Supplement: 
capsule containing 
seaweed extract 

The Effect of Seaweed 
Derived Polyphenols on 
Inflammation and 
Oxidative Stress in Vivo 
- The SWAFAX Study 

Oxidative Stress,  
CV Diseases 

NCT04061070  Supplementation 
with threalose + 
polyphenols 

Effects of Trehalose & 
Polyphenols in 
Vasculopathic Patients     

 
Given these premises, it seems counterintuitive 

to not try the use of polyphenols in HNC treatment 
and prevention. A high intake of polyphenols was 
linked to a nearly 50% decrease in gastric cancer [154]. 
The consumption of stilbenes was shown to lower the 
risk of colorectal adenomas, while anthocyanin and 
flavanols were associated with a reduced risk of 
colorectal cancer [155]. In a separate study focused on 
prostate cancer, the consumption of polyphenols was 
found to significantly decrease the risk [156], and 
isoflavones and flavones were inversely associated 
with the risk of bladder cancer [157]. 

Polyphenols intake was inversely associated 
with colon cancer in men, accordingly to the 
European Prospective Investigation into Cancer and 
Nutrition (EPIC) study, with a cohort of nearly half a 
million people from 10 different Countries [158]. A 
study performed in Hong Kong with people who 
habitually consume green tea had a reduced risk of 
cancer of prostate cancer [159]. 

Although the use of polyphenols to combat 
oxidative stress or cancer appear extremely 
promising, the preliminary results of epidemiological 
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studies must be evaluated with caution and extreme 
care. Ultimately, research of this type can give us 
some indications, but they do not provide us with any 
explanation or even a direct link between the use of 
polyphenols and pathologies. In fact, sometimes, if 
analyzed carefully, their results can be inconclusive: 
in the same work cited above, in some types of cancer, 
therapy with polyphenols did not change the 
incidence of the disease, or in some cases, it even 
worsened [158]. 

However, polyphenols can certainly be useful as 
nutraceutical coadjuvants: they have already 
demonstrated great therapeutic potential by 
increasing the effectiveness of traditional drugs. 
Furthermore, being molecules normally present in 
plants, they do not present any toxicity problems; 
indeed, their use seems to attenuate these side effects, 
which are present in almost 40% of all HNC patients 
[160].  

8. Discussion 
HNC is increasing worldwide, becoming more 

and more a challenging clinical problem. It is 
necessary to find viable strategy to contain this type of 
cancer, and moreover develop alternatives for 
prevention. As mentioned previously, incorporating 
an adequate amount of polyphenols into our diet or 
considering polyphenol supplementation can be 
highly beneficial for maintaining our health, 
preventing and helping our body to fight against 
oxidative stress [161]. The abundant presence of 
polyphenols in plant-based foods justifies the general 
recommendation to consume ample amounts of fruits 
and vegetables for maintaining our well-being. 
Through in vitro and in vivo experiments, it has been 
clearly demonstrated that polyphenols can modulate 
numerous biological pathways. By addressing 
oxidative stress through diverse molecular 
mechanisms, their efficacy can be enhanced, opening 
the door for synergistic interactions among different 
polyphenol molecules [109].  

It is important to recognize that each situation 
presents its own unique challenges and therefore 
requires a tailored approach. The ability to utilize 
different polyphenol molecules based on specific 
circumstances is a valuable asset. Furthermore, the 
effectiveness of combining different polyphenols has 
already been demonstrated in several experiments, 
highlighting the benefits of synergy. Notably, the use 
of polyphenols does not entail any side effects, as they 
are completely non-toxic. This aspect greatly enhances 
the utility of polyphenols in clinical therapy [37,162].  

In the past two decades, significant 
advancements have been made in the field of food 
and nutritional sciences. Conventional nutritional 

recommendations, which primarily focused on the 
sufficient intake of nutrients to prevent disease 
development, have been superseded by the concept of 
personalized nutrition. This approach aims to 
optimize bodily functions and promote human health 
through the utilization of bioactive compounds such 
as polyphenols [148]. 

Different polyphenols molecules often act in 
different ways in our metabolism; hence, different 
polyphenols may act together to produce synergistic 
effects with enhanced health benefits. Understanding 
these synergistic interactions and exploring 
combinatorial approaches can lead to optimized 
therapeutic strategies. Overcoming the challenge of 
achieving the biological effectiveness of polyphenol 
supplementation in our bodies remains a major 
obstacle. In most cases, these compounds have low 
bioavailability and solubility, making it extremely 
challenging to accurately assess their true activity. It is 
crucial to develop new delivery methods and 
synthetic analogs that can enhance this critical aspect: 
although there are already some, further clinical trials 
are needed to investigate the bioavailability of 
polyphenols with innovative methods, like enriched 
foods containing free or encapsulated polyphenols 
[100].  

Many studies on polyphenols primarily consist 
of observational, in vitro, or in vivo research. While 
these studies are valuable in elucidating the molecular 
mechanisms involved, clinical trials participating 
large cohorts are necessary to truly evaluate the 
effectiveness of polyphenol supplementation for 
human health. Without these clinical confirmations, 
the administration of polyphenols for therapeutic 
applications becomes challenging, as there is a lack of 
clear indications regarding their efficacy, optimal 
intake, and specific pathologies in which they can be 
utilized [161]. Intriguingly, the results of a recent 
study investigated the potential anticancer effects of 
combining two natural dietary compounds green tea 
EGCG and resveratrol; these compounds were tested 
both in vitro (in cell cultures) and in vivo (in live 
animals) in the context of HNC [163]. Overall, the 
study results suggests that the combination of EGCG 
and resveratrol, even at low doses where each 
compound alone has marginal effects on apoptosis, 
can synergistically enhance apoptosis and inhibit the 
growth of head and neck tumors. Besides, therapeutic 
strategy using also depends on the activation of the 
immune system against tumor [164-166]; intriguingly, 
a combination of natural polyphenols, containing 
curcumin (C) with resveratrol (R) and epicatechin 
gallate (E), termed TriCurin, presenting a unique and 
synergistic molar ratio, seems to be highly efficient in 
stimulating the immune system against cancer cells 
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and can be used as a safe immunotherapeutic agent to 
turn the immune system against HPV+ tumors [167]. 

However, the polyphenols therapeutic potential 
is becoming more and more evident, enticing the 
worldwide researchers with a landscape of 
therapeutic possibilities to uncover the precise and 
effective biological role of this molecules in counteract 
oxidative stress, enabling their implementation in 
preventive healthcare practices, according to the 
evidence-based dentistry [168]. 

9. Conclusion 
Cancers of the head and neck are clearly 

socioeconomically patterned, with those from the 
poorest backgrounds having the greatest burden, but 
this socioeconomic risk is not entirely explained by 
smoking alcohol and dietary behaviors.  

Polyphenols have the potential to be a strategic 
tool in the battle against cancer for several reasons. As 
a diverse family of molecules, they can combat cancer 
development through multiple mechanisms, increas-
ing the likelihood of success. The idea of preventing 
or curing cancer through a polyphenol-rich diet, 
primarily sourced from plant-based foods, almost 
feels like a dream come true. Additionally, adopting 
healthy dietary habits can deter us from consuming 
comfort foods high in saturated fats and calories, 
which are detrimental to our health and may 
contribute to cancer incidence and progression.  

Recent studies have demonstrated that dietary 
polyphenols could regulate several molecular path-
ways involved in cancer promotion and progression, 
suggesting chemopreventive and therapeutic capacity 
of dietary polyphenols against HNC. 

However, the concentration, absorption, 
bioavailability, and pharmacokinetics of polyphenols 
can pose challenges to their beneficial effects against 
neoplastic diseases. Further research is necessary to 
fully understand the cellular mechanisms by which 
polyphenols operate, enabling the integration of these 
natural compounds into our cancer-fighting 
strategies. While overall results appear promising, 
they remain inconclusive. Randomized controlled 
clinical trials and meta-analyses are required to test 
the actual efficacy of polyphenols, providing 
continuity and perspective to in vitro and cell culture 
studies. Discovering the optimal combination of 
polyphenols for HNC, sustained by innovative 
delivery methods like liposomes and nanoparticles, 
could significantly benefit patients fighting this type 
of cancer worldwide.  
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