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Abstract 

To address the problems that the current polyp segmentation model is complicated and the 
segmentation accuracy needs to be further improved, a lightweight polyp segmentation network model 
Li-DeepLabV3+ is proposed. Firstly, the optimized MobileNetV2 network is used as the backbone 
network to reduce the model complexity. Secondly, an improved simple pyramid pooling module is used 
to replace the original Atrous Spatial Pyramid Pooling structure, which improves the model training 
efficiency of the model while reducing the model parameters. Finally, to enhance the feature 
representation, in the feature fusion module, the low-level feature and the high-level feature are fused 
using the improved Unified Attention Fusion Module, which applies both channel and spatial attention to 
enrich the fused features, thus obtaining more boundary information. The model was combined with 
transfer learning for training and validation on the CVC-ClinicDB and Kvasir SEG datasets, and the 
generalization of the model was verified across the datasets. The experiment results show that the 
Li-DeepLabV3+ model has superior advantages in segmentation accuracy and segmentation speed, and 
has certain generalization abilities. 
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Introduction 
Colorectal cancer is one of the cancers with the 

highest mortality in clinics. It has a long process of 
lesions, initially benign polyps caused by colon 
polyps, but if the examination and treatment are not 
timely, the benign polyps will gradually develop into 
pre-cancerous lesions with the development of time 
[1]. Therefore, early screening and diagnosis of colon 
polyps are considered to be an effective means to 
prevent the occurrence of Colon adenocarcinoma. As 
traditional polyp detection mainly relies on the 
manual operation of clinicians, working for a long 
time can easily lead to miss detection and 
misdetection, the auxiliary diagnostic means 
combined with artificial intelligence has been widely 
noticed and researched [2]. 

Relevant experts and scholars have conducted a 
lot of research on polyp segmentation and have 
achieved rich results. Ganz et al. proposed a new 

method called Shape-UCM, which is an extension of 
the gPb-OWT-UCM algorithm, a state-of-the-art 
algorithm for boundary detection and segmentation, 
Shape-UCM can segment polyp regions, but the 
accuracy needs to be improved [3]. Bernal et al. to 
solve the problem of mislocation, the energy map of 
window median depth of valleys accumulation was 
used to detect intestinal polyps and to obtain the 
polyp boundary [4]. Although the above methods can 
achieve simple segmentation of polyps, they only 
consider part of the feature information, and features 
such as the texture and shape of the polyp and 
background information are not considered 
comprehensively, resulting in segmentation results 
with rough edges, voids, and other problems. With 
the development of deep learning technology, the 
colon polyp segmentation algorithm based on deep 
learning has been deeply studied [5-8]. Tomar et al. 
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proposed a text-guided attention architecture 
(TGANet) to solve the problem of variable size and 
the number of polyps, to achieve robust polyp 
segmentation [9]. To solve the challenge in the polyp 
segmentation task, Sharma et al. proposed the 
Li-SegPNet model, which uses pyramid pooling of 
space to deal with the problem of segmenting objects 
on multiple scales and also solved the semantic gap 
between encoder and decoder by using attention- 
gated modified skip connection [10]. Ige et al. 
proposed a Context Feature Refinement (CFR) 
module to solve the challenges of model generaliza-
tion and low segmentation performance. By using 
multiple parallel convolution layers to extract context 
information from the incoming feature map and 
gradually increasing the kernel size, the network can 
effectively identify and segment fine details in the 
input image [11]. To address the challenge of having 
no obvious boundary between polyps and their 
surroundings, Zhou et al. proposed a cross-level 
feature aggregation network (CFA-Net) for polyp 
segmentation, which consists of a boundary 
prediction network and a polyp segmentation 
network. The boundary prediction network is used to 
generate boundary-aware features which are merged 
into the polyp segmentation network in a 
layer-by-layer strategy, and a two-stream structure is 
used to capture hierarchical semantic information in 
the polyp segmentation network [12]. Shen et al. 
proposed a dual-encoder image segmentation 
network including HarDNet68 and Transformer 
branch, meanwhile, an adaptive fusion module is 
used to realize the inter-channel information 
interaction, which in turn improves the accuracy of 
the segmentation network [13]. Considering the 
clinical need for lightweight polyp segmentation 
models, some experts have taken the lightweight 
feature into account in the design of polyp 
segmentation models. Jeong et al. adjusted the 
hyperparameters based on the DeepLabV3+ model of 
the MobileNetV3 encoder, and compared the 
quantitative and qualitative results, selecting the 
model that performed well in terms of accuracy and 
speed [14]. Mahmud et al. proposed PolypSegNet, a 
polyp segmentation model based on the Unet 
architecture. To reduce the major architectural 
constraints of the traditional Unet structure, three 
major building blocks were added to the baseline 
Unet structure, which are the sequential Depth 
Dilated Inception (DDI), Depth Fusion Skip Module 
(DFSM), and Depth Reconstruction Module (DRM). 
The results show that the improved model reduces 
the number of network parameters and memory 
requirements while providing accurate segmentation 
results [15]. 

Based on the above literature, although the 
performance of the polyp segmentation algorithm has 
been enhanced from different aspects, and achieved 
certain positive results. However, polyp segmentation 
has high requirements in clinical practice, so it is 
necessary to further improve the polyp segmentation 
algorithm in terms of optimization accuracy, 
lightweight, and generalization. In this paper, we 
propose a lightweight segmentation network model 
Li-DeepLabV3+ for polyps. Firstly, the optimized 
lightweight MobileNetV2 is used as the backbone 
network to extract image features. Secondly, for 
high-level features, an improved Simple Pyramid 
Pooling Module (SPPM) is used to enhance feature 
extraction; Finally, the improved Unified Attention 
Fusion Module (UAFM) is used to fuse the low-level 
feature and the high-level feature. The 
Li-DeepLabV3+ model not only ensures lightweight 
but also takes into account the accuracy of polyp 
segmentation. The remainder of this paper is 
structured as follows: In Section 2, we introduce the 
principle of the polyp segmentation algorithm based 
on Li-DeepLabV3+. In Section 3, we provide the 
experimental results, and then compare and study the 
performance of Li-DeepLabV3+ and other 
segmentation algorithms. Section 4 is the conclusion 
and discusses future work. 

Principle of polyp segmentation 
algorithm based on Li-DeeplabV3+ 

DeeplabV3+ [16] adopts an encoder-decoder 
structure to achieve segmentation. The encoder 
module extracts the features of the input image 
through the Xception [17] network, and the extracted 
high-level features are input to the Atrous Spatial 
Pyramid Pooling (ASPP) module to enhance feature 
extraction. The decoder module fuses the high-level 
feature and low-level feature after 4 times 
up-sampling, and then restores the original size of the 
image, thus completing the image segmentation. 
Polyp segmentation has high requirements in clinics, 
which needs to balance the accuracy and lightweight 
of the model. Therefore, a lightweight polyp 
segmentation algorithm Li-DeeplabV3+ is proposed, 
and its model structure diagram is shown in Fig. 1. 

As shown in Fig. 1, the endoscope image first 
enters the optimized MobileNetV2 network for 
feature extraction to obtain a high-level feature and a 
low-level feature. The high-level feature is input into 
the Improved SPPM module to enhance feature 
extraction, and the Improved SPPM module improves 
the training efficiency of the model while reducing the 
model parameters; Secondly, the low-level features 
along with the processed high-level features are fed 
into the Improved UAFM module to enhance the 
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feature representation; Finally, the feature map is 
input into the prediction module to realize the 
segmentation of polyp region. 

Improved MobileNetV2 
Because polyp segmentation requires high 

segmentation speed and accuracy in a 
computer-aided diagnosis system, the algorithm 
should try its best to ensure the recognition accuracy 
of global information when extracting image features, 
and at the same time, there are no redundant 
parameters and computation to ensure the efficiency 
of polyp segmentation. In this paper, the classic 
DeeplabV3+ network structure is improved by 
lightweight, and the backbone network is replaced by 
a pruned MobileNetV2 network instead of the 
Xception network. The whole MobileNetV2 [18] 
network is mainly based on Inverted Residual Block, 
which can realize faster training and higher accuracy, 
and the model structure is easy to transplant and 
optimize. The inverted residual structure is shown in 
Fig. 2, which includes two parts: the left side is the 
trunk part. Firstly, 1 × 1 convolution is used to 
increase the dimension, then 3 × 3 Depthwise 
Separable Convolution is used to extract features 
across feature points, and finally, 1 × 1 convolution is 
used to reduce the dimension; On the right is the 
residual part, and the input and output are 
implemented by adding operation. 

Among them, depth-separable convolution uses 
different convolution checks and different input 
channels to realize space and channel separation, 
which greatly reduces the computation and memory 
size of the network model and improves the running 
speed. In addition, the Relu6 activation function is 
used in the lifting dimension and feature extraction 
part of the inverted residual network, and the 
maximum output of the Relu activation function is 
limited to 6, which reduces the model parameters and 
improves the numerical resolution, and enhances the 
stability and generalization of the model [19]. 

In the DeeplabV3+ network model, the 
MobileNetV2 network is used as the backbone 
network to realize feature extraction and 
multi-feature layer fusion. Therefore, in this paper, 
the MobileNetV2 network is pruned, the three-layer 
structure used to realize classification is discarded, 
and the original network parameters are modified to 
carry out only four times downsampling to ensure the 
image resolution and segmentation accuracy. Taking 
512×512×3 images as input, the structure of the 
pruned MobileNetV2 network is shown in Table 1. 
where Operator represents different network module 
layers, t represents dimension promotion multiple, c 
represents Output number, n represents the number 
of times the modules of this layer are used, s 
represents convolution step size, and Output 
represents the Output characteristic map size of each 
module, that is, the input layer of the next module. 

 

 
Figure 1. Li-DeepLabV3+ model structure diagram. 
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Figure 2. Inverse residual structure. 

 

Table 1. MobilenetV2 network structure after pruning. 

Operator t c n s Output 
Conv2d 3×3 - 32 1 2 256×256×32 
Bottleneck 1 16 1 1 256×256×16 
Bottleneck 6 24 2 2 128×128×24 
Bottleneck 6 32 3 2 64×64×32 
Bottleneck 6 64 4 2 32×32×64 
Bottleneck 6 96 3 1 32×32×96 
Bottleneck 6 160 3 1 32×32×160 
Bottleneck 6 320 1 1 32×32×320 

 

Improved SPPM 
The ASPP module of the DeeplabV3+ model has 

a large amount of computation, so an improved SPPM 
is used to replace the original ASPP structure. The 
SPPM module uses adaptive pooling operation to 
collect context information and makes the global 
pooling operator output feature maps with sizes of 1 × 
1, 2 × 2, and 4 × 4 respectively [20]. To reduce the loss 
of image details when collecting context information, 
the original SPPM module is improved, and its global 
pooling operator outputs feature images with sizes of 
2 × 2, 4 × 4, 8 × 8, and 16 × 16 respectively. Figure 3 
shows the specific module structure diagrams of the 
ASPP, SPPM, and improved SPPM modules. 

As shown in Fig. 3(c), The improved SPPM 
module first uses the pyramid pooling module to fuse 
the input features. The pyramid pooling module has 

four global averaging pooling operations to obtain 
feature maps of sizes 2 × 2, 4 × 4, 8 × 8, and 16 × 16, 
respectively. Then, the output features are followed 
by convolution and upsampling operations. For the 
convolution operation, the kernel size is 1 × 1 and the 
output channels are smaller than the input channels. 
Finally, the Add operation is performed on these 
upsampled features and the convolution operation is 
applied to generate the refined features. The above 
process can be expressed as equations (1)-(2). 

 (1) 

  (2) 

Where, ConvX denotes convolution, batch norm, 
and relu operations. The bin sizes of global average 
pooling are 2 × 2, 4 × 4, 8 × 8 and 16 × 16 respectively.  

Compared with the original SPPM module, the 
improved SPPM module results in less loss of image 
details, thus achieving better segmentation results. 
Compared with the ASPP module, the improved 
SPPM module reduces the number of parameters, 
which better satisfies the real-time needs of the model. 

Improved UAFM 
To enhance the feature representation and 

further reduce the parameters of the model, the 
Improved UAFM module is used to fuse high-level 
and low-level features. Traditional UAFM modules 
generate weights by using spatial or channel attention 
alone and then fuse input features with weights [20]. 
To fuse features more efficiently, the traditional 
UAFM module is improved, and at the same time, the 
spatial and channel attention is used to further 
enhance the feature representation, to achieve clearer 
segmentation of polyp boundaries. The specific 
feature fusion module is shown in Fig. 4. 

In Fig. 4 (a), Fhigh is a high-level semantic feature, 
Flow is a low-level semantic feature, and Attention 
Moulde in Improved UAFM has two modules: spatial 
attention module and channel attention module, 
which are represented by Fig. 4 (b) and Fig. 4 (c) 
respectively. Firstly, bilinear interpolation is used for 
the input Fhigh to make it the same size as Flow, and it is 
expressed by Fup; Secondly, the spatial attention 
module and the channel attention module generate 
weights α and β by taking Fup and Flow as inputs 
respectively, and then carry out Mul operation with 
Fup and Flow and then carry out Add operation to 
obtain a feature map, and use weight β to obtain 
another feature map in the same way; Finally, Mul 
operation is performed on the two feature graphs. The 
above process can be expressed as equations (3)-(6). 

{ }i (2 ,2 )
( )i i inF Upsample ConvX Pool F =  

1 2 3 4( )outF ConvX F F F F= + + +
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Figure 3. Improved SPPM module. 

 
Figure 4. Improved UAFM module. 

 

  (3) 

 (4) 

  (5) 

 (6) 

where SP_Attention indicates that the spatial 
attention module uses the relationship in space to 
generate weights, which represent the importance of 
each pixel in the input feature, and its formula is as 
shown in (7); CH_Attention means that the channel 
attention module uses the relationship between 
channels to generate weights, which indicate the 

importance of each channel in the input features, and 
its formula is shown in (8). 

 

 
(7) 

 
(8) 

Loss function 
To alleviate the effect of uneven distribution of 

polyps and background pixels on model training, a 
mixed loss function of Focal Loss and Dice Loss is 
used to optimize the model [21]. The formulas are 
shown in (9)-(12). 

high( )upF Upsample F=

up low_ ( , )SP Attention F Fα =

up low_ ( , )CH Attention F Fβ =

( (1 )) ( (1 ))out up low up lowF F F F Fα α β β= ⋅ + ⋅ − ⋅ ⋅ + ⋅ −

( ( ( ( ), ( ), ( ), ( ))))up up low lowSigmoid Conv Concat Mean F Max F Mean F Max Fα =

( ( ( ( ), ( ), ( ), ( ))))up up low lowSigmoid Conv Concat AvgPool F MaxPool F AvgPool F MaxPool Fβ =
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  (9) 

 (10) 

 (11) 

 (12) 

where , , , and  are 
the true positives, false negatives, and false positives 
of the categories using predicted probabilities, 
respectively;  denotes the predicted probability 
of pixel n for the category ;  is the ground truth 
for voxel  being class ;  is the total number of 
segmentation categories plus background, and in this 
paper, it is necessary to segment highlights and 
background, so  is equal to 2;  and  are 
trade-offs for penalties for false negatives and false 
positives, set to 0.5 in the experiment;  is the total 
number of pixels in the endoscopic image. 

Experimental analysis 
In this paper, we use CVC-ClinicDB [4] and 

Kvasir-SEG [22] to train and validate the models. 
CVC-ClinicDB contains 612 images, both with a 
resolution of 384×288 pixels; Kvasir-SEG contains 
1000 polyp images and corresponding labels, with 
resolutions ranging from 332×487 to 1920×1072 pixels. 
For CVC-ClinicDB, 80% of these images and masks 
were used for training, the remaining 10% for 
validation, and 10% for testing. For Kvasir-SEG, 
following the official split, 880 images and their masks 
were used to train the model, while the remaining 120 
images and their masks were used for testing. 

Our proposed Li-DeeplabV3+ is implemented in 
Python 3.8 using Pytorch framework on a workstation 
with Windows 11 system, NVIDIA GeForce RTX 3060 
GPU, 11 GB RAM, and Intel Core i7 with 16 logical 
processors. The training of the model is combined 
with the transfer learning idea by pre-training 
weights from the VOC dataset [23]. The number of 
training iterations for the model is set to 100, using the 
AdamW optimizer its initial learning rate is set to 
0.0005 and the learning rate decreases using cosine 
annealing. 

Experiments were conducted to evaluate the 
segmentation results using performance metrics that 
are widely used in the field of medical image 
segmentation, which was measured using five 
metrics: Intersection over Union (IoU), Dice 
coefficient (Dice), Precision (Pre), Recall (Re), and 

Accuracy (Acc). The above metrics are calculated as 
follows: 

, ,

 

,  

Where  is the number of true positive pixels; 
 is the number of false positive pixels;  is the 

number of false negative pixels. 

The influence of transfer learning on the 
improved model 

To explore the impact of transfer learning on the 
improved model, the model was trained by not based 
on transfer learning and based on transfer learning, 
respectively, and the Dice curves as well as the loss 
function curves of the different training methods are 
shown in Fig. 5. 

From Fig. 5, we can see that non-based transfer 
learning needs to be trained about 80 times before the 
loss function converges to a stable value, whereas the 
loss function stabilizes at 60 times of training when 
the model is trained based on transfer learning. In 
addition, the training method based on transfer 
learning is more stable in terms of loss change during 
the training process than not based on transfer 
learning, which indicates that the training method 
based on transfer learning can learn the features of the 
image more quickly. Each evaluation index is shown 
in Table 2. 

 

Table 2. Impact of transfer learning on the improved model. 

Methods IoU(%) Dice(%) Pre(%) Re(%) Acc(%) 
Not based on transfer learning 82.27 90.27 90.09 90.45 98.26 
Based on transfer learning 87.42 93.28 93.05 93.54 98.80 
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From Table 2, it can be seen that each evaluation 
index based on transfer learning has a large 
improvement compared with not based on transfer 
learning, which further illustrates the effectiveness of 
the transfer learning based on this improved model, 
which not only improves the training efficiency but 
also greatly improves the polyp segmentation effect. 

Influence of different loss functions on 
experimental results in improved model 

To study the effect of different loss functions on 
the polyp segmentation performance of the 
Li-DeepLabV3+ network, the comparative 
experiments of Dice loss [24], Focal loss [25], and the 
mixed loss function of Dice loss and Focal loss were 
carried out respectively. Each loss function curve and 
Dice curve are shown in Fig. 6. 

From Fig. 6, because the actual situation of the 
samples in this data set is that the number of polyps 
and background pixels is unbalanced when using 

Focus loss alone to train this model, the model can 
learn poorly classified voxels, but the dice value 
fluctuates greatly during the training process. When 
using Dice loss alone for network training, it can focus 
on polyp region mining, but because of the small area 
of polyp region in the data set, the segmentation result 
is not very superior; The mixed loss function of Dice 
loss and Focal loss combines the characteristics of the 
two loss functions. In the process of network training, 
stable and targeted optimization is adopted for 
samples that are difficult to learn, thus alleviating the 
problems of sample imbalance and small target 
samples. Each evaluation index is shown in Table 3. 

 

Table 3. Performance comparison of different loss functions on 
the improved model. 

Methods IoU(%) Dice(%) Pre(%) Re(%) Acc(%) 
Focal [24] 86.21 92.59 92.56 92.63 98.68 
Dice [25] 84.93 91.85 91.37 92.34 98.54 
Focal+dice [21] 87.42 93.28 93.05 93.54 98.80 

 
 

 
Figure 5. Impact of transfer learning on the improved model. 
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Figure 6. Loss function curve and Dice curve. 

 
It can be seen from Table 3 that the evaluation 

indexes obtained by the mixed loss function are 
higher than those of the two loss functions used alone, 
and IoU is 1.21% and 2.49% higher than Focal loss and 
Dice loss, respectively, indicating that the mixed loss 

function is more suitable for solving the imbalance 
between positive and negative samples and 
containing small target samples, and can obtain better 
segmentation performance. 
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Ablation experiment 
The proposed model is applied to the 

CVC-ClinicDB data set under the same experimental 
conditions. The effects of the backbone network 
feature enhancement module and feature fusion 
module on the segmentation performance and speed 
are mainly observed. The performance evaluation 
index results are shown in Table 4 (where Params 
represents the total number of parameters to be 
trained in the network model, the unit M represents 
Million, and FPS represents the number of frames 
transmitted per second), and the visualization results 
of segmentation performance are shown in Fig. 7. 

It can be seen from Table 4 that compared with 
the backbone network Xception, when the backbone 
network uses mobilenetV2, although the IoU and Dice 
parameters of the network are slightly lower, the 
model training parameters are nearly ten times less, 
and the FPS is also increased by about two times. 
Because of the need for polyp segmentation for model 
segmentation speed, the backbone network 
mobilenetV2 is more suitable. It can be seen from Fig. 
7 that the edge of Image 5 polyp segmentation of 
method b appears burrs, and the segmentation is 
inaccurate, which needs further improvement. To 
further reduce the number of parameters and improve 

the segmentation effect of the network, this paper 
improves the feature enhancement and feature fusion 
module of the model. 

For the feature enhancement module, when the 
original feature enhancement module ASPP is 
replaced by the SPPM module, the parameters of the 
model are reduced by 1.87M again, and the FPS 
reaches 89.92, but the segmentation effect of the 
model is poor. Therefore, the SPPM module is 
improved. Although the FPS using the Improved 
SPPM module is reduced by 2.28, the parameters of 
the model are only increased by 0.082 M, while the 
IoU and Dice parameters are increased by 8.56% and 
5.21% respectively. It can also be seen in Fig. 7 that the 
segmentation effect of the d method is better than that 
of the c method, which shows the effectiveness of 
Improved SPPM. 

For the feature fusion module, when the original 
feature fusion module is replaced by the UAFM 
module, the parameters of the model are reduced by 
0.482 M, and the accuracy is improved. To further 
improve the segmentation effect, the UAFM module 
is improved. The IoU and Dice coefficient of the 
model are increased to 87.05% and 93.07% 
respectively with the same parameters, which proves 
the superiority of the Improved UAFM. 

 
 

Table 4. Ablation experiment. 

Methods IoU(%) Dice(%) Pre(%) Re(%) Acc(%) Params(M) FPS 
a Xception+ASPP[16] 86.64 92.84 92.17 93.52 98.71 54.71 44.82 
b mobilenetV2+ASPP 85.97 92.46 92.02 92.89 98.65 5.81 85.93 
c mobilenetV2+SPPM 77.05 87.04 85.48 88.66 97.64 3.94 89.92 
d mobilenetV2+ Improved SPPM 85.61 92.25 90.98 93.54 98.63 4.03 87.64 
e mobilenetV2 +ASPP+UAFM 86.81 92.91 93.15 92.73 98.74 5.33 87.37 
f mobilenetV2+ASPP+Improved UAFM 87.05 93.07 92.82 93.33 98.76 5.33 86.58 
g Li-DeeplabV3+ 87.42 93.28 93.05 93.54 98.80 3.54 90.08 
 

 
Figure 7. Ablation experiment. 
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Figure 8. Quantitative analysis. 

 
When Improved UAFM and Improved SPPM 

are used at the same time, the parameters of the 
improved model are reduced by 15.4 times compared 
with the original model, FPS is increased by two 
times, IoU, Dice coefficient and accuracy of the model 
reach 87.42%, 93.28%, and 98.80% respectively, and 
Recall and Precision reach an equilibrium state. The 
advantages of the method can also be reflected in Fig. 
7, and the segmentation contour is closer to Ground 
Truth, so Li-DeeplabV3+ can meet the requirements 
of polyp segmentation speed and achieve better 
segmentation accuracy. 

Quantitative analysis 
To test the superiority of the improved 

algorithm, Kvasir-SEG, and CVC-ClinicDB datasets 
are used to compare three segmentation algorithms, 
Unet [26], SegFormer [27], and ConvSegNet [11]. At 
the same time, two cross-dataset experiments are 
carried out to explore the generalization ability of the 
improved model. The image size is adjusted to 256 × 
256, and the training is carried out under the same 
conditions. The visualization result of segmentation 

performance is shown in Fig. 8. 
It can be seen from Fig. 8 that the segmentation 

results of the Li-DeepLabV3+ model on Kvasir-SEG 
and CVC-ClinicDB data sets are closer to Ground 
Truth than other models, which can suppress similar 
background areas and noises more thoroughly, and 
have stronger robustness to the shape and size 
changes of target areas. For cross-datasets, the 
improved model is more delicate and more 
generalized than other models. Specific segmentation 
evaluation indexes are shown in Table 5. 

It can be seen from Table 5 that for the 
Kvasir-SEG data set, IoU, Dice coefficient, recall, and 
accuracy of the Li-DeepLabV3+ model are the best 
results, reaching 79.88%, 88.82%, 88.42%, and 96.56% 
respectively. The recall rate of the Li-DeepLabV3+ 
model is 1.81% lower than that of the ConvSegNet 
model, but its accuracy rate is 88.42%, which indicates 
that the possibility of false detection of this model is 
less. For the CVC-ClinicDB data set, the evaluation 
indexes of this model are better than all benchmark 
models, and the accuracy and recall are balanced, 
which has strong clinical application potential. IoU is 
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2.75%, 9.84%, and 3.97% higher than Unet, SegFormer, 
and ConvSegNet respectively, which reflects the 
superiority of the improved algorithm. 

For the cross-dataset experiment from 
Kvasir-SEG to CVC-ClinicDB dataset, compared with 
the most competitive ConvSegNet model, the 
accuracy of IoU, Dice coefficient, Precision, and Recall 
of the improved model is 2.6%, 5.13%, 4.2%, 0.79% 
and 0.01% higher, respectively. From the 
segmentation results in Fig. 8, it can be seen that the 
possibility of missing detection is smaller than in 
other models. After training the model on 
CVC-ClinicDB and testing it on Kvasir-SEG, the 
accuracy and Dice of the improved model reached 
94.79% and 81.36%, respectively. The recall is 8.35% 
lower than that of ConvSegNet, but the precision rate 
is 14.56% higher than that of ConvSegNet, which 
shows that the Li-DeepLabV3+ model has a certain 
generalization ability. 

To explore the lightweight and real-time nature 
of the model, the number of parameters as well as the 
FPS of the above models are compared under the 
same experimental conditions, and the results are 
shown in Fig. 9. 

As can be seen from Fig. 9, the Li-DeeplabV3+ 
model has the fastest segmentation speed with the 
least parameters, and its parameters are 21.35 M, 0.21 
M, and 12.04 M less than those of UNet, SegFormer, 
and ConvSegNet, respectively. At the same time, the 
FPS of the model is superior to all benchmark models, 
among which, compared with the most competitive 
SegFormer model, the FPS of Li-DeeplabV3+ is 
improved by 17.56. This further proves that the 
proposed method takes into account the lightweight 
and real-time performance of the polyp segmentation 
model. 

Clinical experiments 
To validate the Li-DeepLabV3+ model for 

clinical segmentation, we performed experiments on a 
self-made clinical dataset using pre-trained weights 
which were trained on the Kvasir-SEG dataset. The 
segmentation results of different algorithms are 
shown in Fig. 10, where Ground truth is the result of 
manual segmentation by relevant experts. 

From Fig. 10, it can be seen that the segmentation 
results of our proposed model Li-DeepLabV3+ are 
closer to Ground truth relative to other models. lower 
miss and false detection rates, and the lesion area can 
be segmented more accurately. The specific 
segmentation evaluation indexes are shown in Table 
6. 

It can be seen from Table 6 that compared with 
other models, the Li-DeepLabV3 + model is at the best 
level of IoU, Dice, precision, and accuracy, and at the 

same time, the accuracy and recall rate are in a 
balanced state. This proves the superiority of the 
Li-DeepLabV3 + model and its effectiveness and 
feasibility in clinical practice. 

 

Table 5. Quantitative analysis. 

Method IoU(%) Dice(%) Pre(%) Re(%) Acc(%) 
Dataset: Kvasir-SEG 
Unet [26] 73.84 84.95 88.17 81.11 95.38 
SegFormer [27] 76.94 86.97 86.07 87.89 96.51 
ConvSegNet [11] 79.44 86.30 86.23 91.03 95.72 
Li-DeepLabV3+ (ours) 79.88 88.82 88.42 89.22 96.56 
Dataset: CVC-ClinicDB 
Unet [26] 84.67 91.70 94.50 89.06 98.74 
SegFormer [27] 77.58 87.37 89.55 85.30 97.80 
ConvSegNet [11] 83.45 90.27 89.64 92.58 98.79 
Li-DeepLabV3+ (ours) 87.42 93.28 93.05 93.54 98.80 
Training dataset: Kvasir-SEG----Test dataset: CVC-ClinicDB 
Unet [26] 61.18 75.92 80.08 72.16 96.44 
SegFormer [27] 67.69 80.73 83.38 78.25 96.66 
ConvSegNet [11] 68.35 77.87 79.64 81.41 96.98 
Li-DeepLabV3+ (ours) 70.95 83.00 83.84 82.20 96.99 
Training dataset: CVC-ClinicDB----Test dataset: Kvasir-SEG 
Unet [26] 66.66 79.99 81.52 78.53 94.38 
SegFormer [27] 67.20 80.38 82.13 78.71 94.50 
ConvSegNet [11] 61.63 71.55 69.18 87.89 90.13 
Li-DeepLabV3+ (ours) 68.58 81.36 83.74 79.35 94.79 

 

Table 6. Segmentation effects on self-made datasets. 

Methods IoU(%) Dice(%) Pre(%) Re(%) Acc(%) 
Unet[26] 82.74 90.56 85.58 96.15 98.03 
Segformer[27] 81.05 89.53 92.16 87.05 98.00 
ConvSegNet[11] 78.07 86.94 79.93 97.42 97.48 
Li-DeepLabV3+(ours) 87.91 93.56 93.27 93.86 98.74 

 

Conclusion 
An end-to-end lightweight polyp segmentation 

network model Li-DeepLabV3+ is proposed in this 
paper. Firstly, the backbone network of the original 
DeeplabV3+ model is replaced by the optimized 
MobileNetV2 network to reduce the complexity of the 
model; Secondly, the Improved SPPM is adopted in 
the feature extraction module to reduce the model 
parameters and improve the training efficiency of the 
model; Finally, Improved UAFM is used to fuse 
low-level features and high-level features to enhance 
the feature representation of the model. The 
parameters of the Li-DeeplabV3+ model are reduced 
by 15 times compared with the original model, and 
IoU and Dice of 79.88%, 88.82%, and 87.42%, 93.28% 
are obtained on Kvasir SEG and CVC-ClinicDB 
respectively. Compared with the benchmark model in 
the experiment, the Li-DeeplabV3+ model has both 
accuracy and real-time performance of polyp 
segmentation and has a certain generalization ability. 
Although the parameters of the Li-DeepLabV3+ 
model have been significantly reduced, compared 
with the latest model, its missing detection rate can 
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not be ignored. For future work, we plan to explore 
how to reduce the missing detection rate of polyp 
region segmentation while ensuring the lightweight 
of the model.  
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