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Abstract 

Endometrial cancer (EC) is a common gynecologic malignancy, with a rising trend in related mortality 
rates. The assessment based on imaging examinations contributes to the preoperative staging and surgical 
management of EC. However, conventional imaging diagnosis has limitations such as low accuracy and 
subjectivity. Radiomics, utilizing advanced feature analysis from medical images, extracts more 
information, ultimately establishing associations between imaging features and disease phenotypes. In 
recent years, radiomic studies on EC have emerged, employing radiomic features combined with clinical 
characteristics to model and predict histopathological features, protein expression, and clinical prognosis. 
This article elaborates on the application of radiomics in EC research and discusses its implications. 
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Introduction 
Endometrial cancer (EC) stands as a prevalent 

gynecological malignancy, with an annual global 
incidence of approximately 417,000 newly diagnosed 
cases [1]. In the context of China, the year 2016 
witnessed about 71,100 fresh EC cases and an 
estimated 17,100 fatalities [2]. Despite a generally 
favorable prognosis for EC, the scenario becomes 
grim for patients grappling with advanced or 
recurrent stages, characterized by significantly 
diminished outcomes. Notably, the 5-year overall 
survival rates for stages IVA and IVB are restricted to 
a mere 17% and 15%, respectively [3]. Moreover, a 
concerning upward trajectory in EC-related mortality 
has been observed [4], with the survival rate for 
females afflicted with uterine malignancies showing 
no enhancement over the preceding four years [5]. 
The prognosis of EC is intricately influenced by a 
spectrum of factors, fostering the development of risk 
assessment frameworks grounded in FIGO staging, 
grading, histological variations, lymphovascular 

space invasion (LVSI), and molecular subtypes [6]. 
In the realm of EC management, surgical 

pathological staging retains a pivotal role, comple-
mented by imaging examinations that facilitate 
refined preoperative staging and surgical planning. 
Ultrasonography emerges as the primary tool for 
early-stage disease screening, while magnetic 
resonance imaging (MRI) serves to delineate 
myometrial and cervical stromal invasion, thereby 
enhancing preoperative staging accuracy. Although 
computed tomography (CT) offers limited sensitivity 
(83%) and specificity (42%) in pinpointing myometrial 
and cervical stromal invasion, it finds utility in the 
later stages, particularly for the detection of 
extrauterine lesions. Positron emission tomography/ 
computed tomography (PET/CT), on the other hand, 
proves instrumental in identifying extrapelvic 
involvement, boasting high specificity in the detection 
of lymph node metastasis (94%) and EC recurrence 
(90-100%) [7]. Moreover, innovative approaches such 
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as three-dimensional transvaginal ultrasound 
(3D-TVS) are gaining traction in the preoperative 
evaluation of EC. Despite the extensive deployment of 
these imaging modalities, conventional diagnostic 
strategies encounter certain limitations. A pertinent 
study encompassing 91 EC patients disclosed that a 
mere 47.2% of MRI evaluations accurately forecasted 
the disease stage [8], with the efficacy of ultrasono-
graphy being potentially undermined by elements 
like leiomyomas impacting the myometrial layers [9]. 
These hurdles necessitate a profound investigation 
into the potentialities of medical imaging data. 

Introduced in 2012, the field of radiomics, 
alternatively termed radiogenomics, aspires to unlock 
a wealth of information encapsulated in medical 
images through sophisticated feature analysis [10]. 
This domain encompasses procedures such as image 
segmentation, feature extraction, and selection, 
coupled with analytical techniques to forge 
associations between imaging attributes and disease 
phenotypes. In a significant stride, Griethuysen et al. 
[11] unveiled the open-source platform PyRadiomics, 
accessible at [https://pyradiomics.readthedocs.io/ 
en/latest/] (https://pyradiomics.readthedocs.io/en/ 
latest/), which heralded the standardization of 
algorithms and image processing protocols, thereby 
amplifying the efficiency of research workflows. 
Figure 1 delineates the overarching framework of 

radiomics. In the ensuing years, the radiomics sector 
witnessed a surge in studies, inclusive of those 
centered on EC, leveraging primarily MRI, supple-
mented by CT and PET-CT, and to a lesser extent, 
ultrasound imagery. These investigations predomi-
nantly focus on modeling imaging characteristics and, 
to a certain degree, clinical parameters, with the aim 
of predicting histopathological attributes, protein 
expression profiles, and clinical prognosis. Figure 2 
illustrates the integration of radiomics in EC research, 
setting the stage for an in-depth exploration of the 
nuances of EC radiomics in the subsequent 
discussion. 

1. Evaluation of Myometrial Invasion 
Depth in Initial Stages of Endometrial 
Carcinoma 

Myometrial invasion (MI) is a critical parameter 
that significantly influences surgical planning and 
prognosis in EC, being closely related to lymph node 
metastasis [12]. Currently, MRI stands as the principal 
tool for preoperative MI evaluation in EC [13]. 
However, the task of distinguishing between 
superficial and deep MI based solely on MRI imagery 
can be intricate, often necessitating the discerning 
judgment of physicians for accurate staging [12]. 

 

 
Figure 1. General framework showing the main steps of the radiomics. The general workflow of radiomics includes acquiring high-quality imaging data, delineating Regions of 
Interest (ROIs) using various relevant software, extracting features based on PyRadiomics, filtering features using different statistical methods, and finally constructing and 
validating the predictive models. 
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Figure 2. The utilization of radiomics in EC.  

 
Recent studies have ventured into the potential 

of utilizing multiparametric MRI radiomics along 
with machine learning classifiers in the preoperative 
assessment of EC. A study by Otani, Himoto et al. [14] 
scrutinized the efficacy of these classifiers, noting an 
average Area Under the Receiver Operating 
Characteristic Curve (AUROC) of 0.83 for the Deep 
Myometrial Invasion (DMI) classifier, a score 
comparable to the performance of experienced 
radiologists. In a similar vein, the research conducted 
by Han’s team [15] encompassed 163 EC patients and 
focused on extracting 24 radiomics features from 
T2-weighted imaging (T2WI) and diffusion-weighted 
imaging (DWI), achieving an AUROC of 0.85 in the 
validation set, a score not significantly different from 
subjective diagnoses (P>0.05). Furthermore, the team 
led by Stanzione [16] managed to attain an AUROC of 
0.92 using a radiomics feature classifier, enhancing the 
accuracy of radiologists from 82% to a perfect 100%. 
Another noteworthy study by Rodríguez-Ortega, 
Alegre et al. [17] integrated radiomics features with 
parameters such as the apparent diffusion coefficient 
(ADC) and time to peak in their classifier model, 
achieving an optimal performance in identifying 
outcomes with MI≥50% (accuracy 86.1%, AUROC 
0.871). 

In addition, the development of radiomics-based 
nomograms has emerged as a promising tool in MI 

assessment in EC. A study by Zhao et al. [18] 
amalgamated clinical and conventional imaging 
indicators with radiomics features to construct a 
nomogram, registering an AUROC of 0.871 in the 
validation set, closely aligning with ideal benchmarks. 
Similarly, research by Wang et al. [19] combined 
clinical data with radiomics features, utilizing a 
nomogram to proficiently predict DMI, with an 
AUROC of 0.883. This tool notably enhanced the 
diagnostic accuracy of radiologists, elevating it from 
79.0% and 80.2% to 90.1% and 92.5%, respectively. In a 
parallel development, Yan, Ma et al. [20] developed a 
nomogram for predicting ovarian preservation in 
early-stage EC, achieving an AUROC of 0.96, thereby 
surpassing the performance of radiologists (0.80 and 
0.86). To address the challenge of detecting 
non-visible EC in MRI, Jiang’s team [21] developed 
two radiomics models for distinguishing non-visible 
EC and MI, both demonstrating excellent perfor-
mance with average AUROCs of 0.896 and 0.844, 
respectively. The current body of research indicates 
that classifiers based on radiomics features, either 
standalone or in conjunction with selected clinical and 
traditional imaging features, hold high diagnostic 
efficacy, potentially matching or exceeding the 
capabilities of seasoned radiologists, thereby 
enhancing diagnostic precision. 
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2. Prediction of Tissue Typing and 
Histological Grading 

The conventional categorization of EC hinges on 
histological attributes, bifurcating it into 
estrogen-dependent (Type I) EC, encompassing Grade 
1 and Grade 2 endometrioid adenocarcinomas, and 
non-estrogen-dependent (Type II) EC, which includes 
Grade 3 endometrioid adenocarcinoma along with 
non-endometrioid variants such as serous carcinoma, 
clear cell carcinoma, undifferentiated carcinoma, and 
carcinosarcoma [22]. Despite the gradual shift 
towards molecular classification in the EC domain, 
histological traits and grading retain their significance 
as pivotal evaluation parameters, as underscored by 
the recent 2022 ESMO guidelines [6]. Presently, 
radiomics research predominantly leverages MRI 
technology, concentrating on the differentiation of 
early-stage EC from benign conditions or 
precancerous lesions, and distinguishing among 
diverse histological EC variants. 

2.1 Histological Variants 
Recent research spearheaded by Bi et al. [23] in a 

multicentric study encompassing 371 patients, 
meticulously extracted radiomics features from T2WI, 
DWI, ADC maps, and late contrast-enhanced 
T1-weighted imaging (LCE-T1WI). Utilizing logistic 
regression, they formulated a radiomics model adept 
at distinguishing IA-stage EC from benign 
endometrial lesions, achieving an accuracy of 0.802 
and exhibiting high AUROC values in both internal 
and external validations (average 0.854). Concur-
rently, another multicentric study conducted by Chen, 
Wang et al. [24] employed five selected radiomics 
features derived from ADC, T2WI, and DWI to 
develop a linear kernel support vector machine 
model, which demonstrated a remarkable average 
AUROC of up to 0.983 in distinguishing EC from 
benign conditions such as endometrial polyps. 
Moreover, Zhang et al. [25] crafted a radiomics- 
clinical model, integrating radiomics features with 
clinical indicators such as uterine endometrial 
thickness exceeding 11mm and nulliparous status, to 
differentiate endometrial carcinoma from atypical 
endometrial hyperplasia, attaining an AUROC of 
0.942 in the validation set. Xie et al. [26] led a study 
comparing MRI features and radiomics features in 
distinguishing uterine sarcoma from atypical 
leiomyoma, where the radiomics model slightly 
outperformed radiologists with an AUROC of 0.830 as 
opposed to 0.752. Furthermore, radiomics-based 
nomograms have been effectively utilized to 
differentiate between Type I and Type II EC, with a 
retrospective study involving 875 EC patients 

achieving AUROCs of 0.93 (training set) and 0.91 
(testing set) [27]. 

2.2 Histological Grading 
Nevertheless, the current landscape of research 

exhibits a discernible gap in substantial evidence 
affirming the superiority of imaging techniques in 
predicting histological grading. Initiatives undertaken 
by various research groups [14, 28] aimed at 
forecasting histological grading through MRI-based 
radiomics classifiers have yielded average AUROC 
values of 0.77 and 0.64, respectively. These figures fall 
short of the benchmark set by the tumor short axis 
measurement of ≥20mm (AUROC=0.86), indicating a 
room for enhancement in diagnostic performance. 

3. Prognostication of Lymphovascular 
Space Invasion (LVSI) Status 

LVSI, characterized by the infiltration of tumor 
cells within the lymphatic or vascular channels of the 
uterine myometrium, serves as a pivotal prognostic 
marker and stands as an autonomous risk 
determinant for lymph node metastasis and adverse 
prognosis [29, 30]. The preoperative ascertainment of 
LVSI status is instrumental in clinical stewardship, 
particularly influencing surgical strategizing. 

In the context of EC, the prognostication of LVSI 
via radiomics as a standalone approach appears to 
encounter certain impediments. Research endeavors 
spearheaded by Celli et al. [31] and Bereby-Kahane et 
al. [28], among others, have ventured into the 
development of radiomics models predicated on ADC 
and T2WI to prognosticate LVSI status. However, 
these efforts have culminated in AUROC values 
merely hovering around 0.59, thereby denoting a 
confined efficacy. Conversely, the integration of 
parameters derived from diverse modalities markedly 
amplifies the predictive prowess. For instance, Luo et 
al. [32] orchestrated a multi-modal nomogram, 
registering AUROC values of 0.820 and 0.807 in the 
training and testing sets respectively. Furthermore, 
Long et al. [33] augmented the model with computer 
vision attributes, thereby elevating the average 
AUROC from 0.77 to a notable 0.87. In a parallel 
multicentric investigation conducted by Liu, Yan et al. 
[34], a radiomics nomogram, enriched with age and 
carbohydrate antigen 125 (Ca125) parameters, 
attained AUROCs of 0.89 and 0.85 in the training and 
testing sets respectively, underscoring its efficacy in 
LVSI status prognostication. Hence, it is discernible 
that the adoption of a multi-modal parameter frame-
work manifests as a superior strategy in enhancing 
the predictive accuracy for LVSI status in EC. 
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4. Prognostication of Lymph Node 
Metastasis (LNM) 

Lymph node metastasis (LNM) is recognized as 
a significant prognostic determinant in EC [35]. 
Historically, pelvic and para-aortic lymphadenectomy 
have constituted the preliminary surgical intervent-
ions, with the risk of LNM oscillating between 5% and 
40% [36]. Nonetheless, LNM can precipitate lymphe-
dema in upwards of 30% of patients, alongside 
heightened bleeding risks [37]. Despite the lack of 
evidence showcasing enhanced outcomes associated 
with systematic pelvic lymphadenectomy (LNE) in 
EC from prospective randomized trials [38, 39], 
lymphadenectomy remains pivotal in steering 
adjuvant treatment strategies and furnishing 
prognostic insights, necessitating the evaluation and 
excision of suspect lymph nodes. 

The diagnostic prowess of MRI in discerning 
LNM in EC patients is somewhat limited, exhibiting a 
sensitivity of 43% and specificity of 73%, and faltering 
in distinguishing between inflammatory enlargement 
and metastatic nodes [40-42]. Conversely, while 
PET/CT manifests high specificity (94-99%), its 
sensitivity (33-72%) in detecting LNM in EC patients 
is compromised, particularly in identifying nodes 
with dimensions less than 5mm [7, 43, 44]. The 
progression of functional MRI in this domain is 
somewhat restrained, albeit radiomics has facilitated a 
degree of amelioration. 

In the pursuit of prognosticating LNM in lymph 
nodes of standard size, Xu and team [45] orchestrated 
a predictive model leveraging dynamic contrast- 
enhanced MRI (DCE MRI) and clinical parameters. 
This comprehensive model, encapsulating radiomics 
attributes, lymph node dimensions, and Ca125, 
demonstrated commendable diagnostic efficacy, 
registering AUROCs of 0.892 and 0.883 in the training 
and testing sets respectively. Parallel studies [46, 47] 
recorded AUROCs of 0.940 and 0.85 respectively in 
LNM prognostication, markedly surpassing the 
average ADC model (0.54) and the standard for 
lymph node short-axis diameter (0.62). Notwith-
standing, the inclusion of tumor grade in Yang's 
model imposes certain constraints. Liu et al. [48] 
formulated a radiomics nomogram integrating 
MRI-based radiomics attributes and Ca125, exhibiting 
a high predictive accuracy for LNM (average AUROC 
= 0.83). Moreover, a multicentric investigation [42] 
exclusively reliant on radiomics attributes showcased 
remarkable predictive performance for LNM across 
training and dual testing sets (AUROCs = 0.935, 0.909, 
0.885), significantly outperforming manual radiologist 
evaluations. However, the incorporation of 37 
features in this model incites debates regarding its 

efficiency and applicability. 
The extraction, selection, and modeling of 

radiomics attributes can notably enhance the 
sensitivity of PET/CT in LNM prognostication. A 
research endeavor [44] amalgamated unique 
heterogeneity attributes derived from primary tumors 
with conventional visual detection, achieving 
sensitivities of 94% and 89% in two cohorts for LNM 
detection, a substantial improvement from the 50% 
and 33% attained through visual detection alone. 
Soydal et al. [49] identified critical radiomics 
attributes for LNM prognostication via texture 
features and data mining, attaining an accuracy rate 
of 0.8. Another group [50] computed 167 radiomics 
attributes within the tumor contour utilizing the 
Image Biomarker Standardization Initiative (IBSI) 
methodology, selecting 64 features with significant 
correlations to LNM, and ultimately pinpointing 
volume density as the paramount predictive attribute 
(AUROC = 0.77). The amalgamation of radiomics 
attributes with other multi-modal parameters can 
substantially augment the accuracy of LNM 
prognostication in EC. 

5. Molecular Characteristics 
The recent ESMO guidelines have ushered in a 

new era of risk assessment for EC, integrating 
molecular subtyping into the evaluation process [6]. 
The POLE ultramutated (POLE mut) subtype is 
indicative of a promising prognosis, whereas p53 
abnormalities (p53abn) denote a substantial advan-
tage from adjuvant chemoradiotherapy, as opposed to 
radiotherapy in isolation [51]. The deficiency in 
mismatch repair (MMRd) is intrinsically linked to 
Lynch syndrome, prompting numerous global 
organizations to advocate for universal MMRd testing 
in EC patients [52]. This approach potentially facili-
tates the effective deployment of immune checkpoint 
inhibitors in MMRd patients [51]. Furthermore, 
pinpointing potential target pathways such as 
PI3K-AKT or FBXW7-FGFR2 holds significance, 
especially in tumors with a grim prognosis [53]. At 
present, the primary method for POLE mut testing is 
sequencing, while the identification of MMRd, 
p53abn, and significant pathway targets predomi-
nantly occurs through pathological tissue 
immunohistochemistry [52]. However, these tests 
necessitate postoperative pathological specimens and 
entail substantial costs. Radiomics emerges as a 
beacon of hope, offering a non-invasive avenue for the 
preoperative prediction of molecular subtypes, 
prognosis, and treatment-related protein expression 
in EC. Models grounded in high-reliability radiomic 
classification have the potential to supersede 
traditional immunohistochemistry and sequencing 
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methods, facilitating early-stage, precise treatment 
plan selection for patients, particularly before the 
availability of sequencing results [53]. 

In 2020, a pioneering study [54] embarked on an 
exploration to ascertain if radiomics attributes derived 
from contrast-enhanced computed tomography 
(CE-CT) could discern MMRd and/or high tumor 
mutation burden (TMB-H) in EC. The model, which 
amalgamated radiomics and clinical features, adeptly 
differentiated MMRd from copy-number low (CN-L) 
and copy-number high (CN-H) EC, registering an 
AUROC of 0.78. Moreover, it successfully segregated 
TMB-H from low tumor mutation burden (TMB-L), 
achieving an AUROC of 0.87, thereby affirming the 
supportive role of radiomics in molecular spectrum 
analysis. Another research initiative [55] detected 
disparities in the gray level co-occurrence matrix 
entropy (GLCM Entropy) within PET/CT radiomics 
features between Lynch syndrome and non-Lynch 
syndrome EC, with significant statistical results 
(p<0.001, AUROC=0.94 in the training set, 0.893 in the 
testing set). This study also unveiled correlations 
between GLCM Entropy variations and PD1 
expression, based on RNA-seq genomic data in a 
separate cohort comprising 23 patients. Furthermore, 
a group formulated a radiomic prognostic index (RPI) 
grounded in MRI radiomics features, establishing a 
notable link between high RPI and adverse prognosis 
(p<0.001). This discovery spurred further investiga-
tion into mRNA expression disparities between high 
and low RPI groups, unveiling prognostically 
pertinent differentially expressed genes COMP and 
DMBT1. A comprehensive study encompassing 866 
EC patients [56] identified correlations between 
radiomics features and specific transcriptional 
programs, marking a significant milestone in imaging 
genomics and furnishing fresh perspectives and 
benchmarks for ensuing EC radiomics research. 

In the context of reproductive-aged women 
aspiring to retain fertility and grappling with atypical 
endometrial hyperplasia (AEH) or EC, a preference 
for conservative treatment primarily anchored in 
endocrine therapy is prevalent. Generally, individuals 
harboring POLE mutations exhibit a favorable 
prognosis, although the simultaneous presence of 
PTEN-negative/CTNNB1-positive expressions could 
amplify the risk of carcinogenesis or cancer 
progression. However, the current scientific 
landscape lacks conclusive evidence to delineate the 
molecular subtypes of endometrial cancer that would 
benefit maximally from conservative treatment [57]. 
The inception of classification models within the 
cohort opting for conservative treatment for EC, 
integrating radiomic features with or without 
molecular subtyping, to promptly determine patient 

suitability for conservative treatment, emerges as a 
promising avenue for future research. In summation, 
while the exploration of this domain for EC is nascent, 
it harbors substantial potential and exploratory value. 

6. Survival Analysis and Risk 
Stratification 

The field of radiomics is witnessing a growing 
trend where research teams are venturing beyond the 
confines of single-index modeling predictions to 
apply radiomics directly in the survival analysis and 
risk stratification of EC. These models, which 
amalgamate predicted outcomes, are noted for their 
enhanced usability and clinical accessibility. 

At present, the majority of radiomics models 
devised for EC risk stratification are grounded in MRI 
technology. However, the criteria utilized for risk 
stratification in EC are diverse. While some studies 
earmark high risk based on parameters like MI, LNM, 
and histological type I/II, others extend their criteria 
to include LVSI and histological grading. This absence 
of standardized criteria poses a challenge for clinical 
implementation, yet the insights garnered from these 
studies remain a valuable reference. A notable study 
conducted by Mainenti, Stanzione et al. [58] 
encompassed 133 patients from two different 
institutions and zeroed in on four radiomics features 
for their modeling, achieving an average AUROC of 
0.715 in distinguishing high-risk from low-risk EC 
cases. In a similar vein, Zhang's group [59] merged 
MRI radiomics features with ADC to formulate a 
radiomics-based column chart model, facilitating the 
classification of EC types, grading, DMI, LVSI, and 
LNM, with AUROCs ranging between 0.746 and 
0.959. Another multicentric study spearheaded by 
Yan, Li et al. [60] employed a column chart model to 
predict high-risk EC, registering promising AUROCs 
of 0.896, 0.877, and 0.919 across the training set and 
two testing sets. Lefebvre and colleagues [61] 
delineated high-risk EC based on factors such as DMI, 
LVSI, and advanced FIGO stage, with model 
AUROCs oscillating between 0.74 and 0.84. Moreover, 
a study by Chen et al. [62] centered on stage I EC, 
where their radiomics model surpassed models based 
on clinical and routine MRI features in predicting 
low-risk and intermediate-high-risk EC, boasting an 
AUROC of 0.946 as opposed to 0.756. In a recent 
endeavor, Moro, Albanese et al. [63] applied 
radiomics analysis to ultrasound imagery, crafting 
three distinct models (radiomics model, clinical 
ultrasound model, mixed model) for the prediction of 
high-risk EC. These models exhibited AUROCs of 
0.80, 0.90, and 0.88 in the validation set for high-risk 
predictions, and 0.71, 0.85, and 0.80 for low-risk 
predictions. Despite demonstrating predictive 
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prowess, radiomics applied to ultrasound images did 
not significantly outperform traditional models, with 
the subjective nature of ultrasound image acquisition 
serving as a limitation. As of now, there are no 
published studies on radiomics targeting the latest EC 
risk stratification guidelines. 

Simultaneously, several studies have made 
strides in crafting prognostic prediction models by 
marrying radiomics features with clinical character-
istics. A retrospective study encompassing 53 EC 
patients [64] integrated PET/CT radiomics features 
with certain clinical characteristics to formulate a 
model predicting disease progression, with the 
k-nearest neighbors (kNN) machine learning algo-
rithm propelling it to the highest performance tier 
with an AUROC of 0.890. Liu and team [65] devised a 
column chart model to forecast 5-year progression- 
free survival (PFS), utilizing radiomics features 
extracted from a retrospective analysis of 202 EC 
patients, outclassing a basic clinical prediction model 
with AUROCs of 0.840 (training set) and 0.958 (testing 
set). Furthermore, Li et al. [66] selected three 
radiomics features from T2WI MRI and amalgamated 
them with two clinical variables to create a Cox 
proportional hazards (CPH) model for survival time 
prediction, which exhibited superior performance in 
testing compared to the clinical model, with an AUC 
of 0.727 against an AUROC of 0.624. 

Summary and Prospects 
In recent times, the sphere of radiomics research 

pertaining to EC has undergone substantial growth, 
with a marked reliance on MRI as a primary tool. 
These studies are increasingly incorporating clinical 
data and other multimodal parameters to formulate 
predictive models that span various prognostic facets 
including histological classification, grade, MI, LVSI, 
LNM, and analyses of molecular or protein 
expressions. A significant shift has been observed 
from single-parameter predictions to more compre-
hensive analyses focusing on risk stratification and 
survival outcomes, demonstrating promising 
diagnostic efficacy. 

However, the path to further progress and 
clinical implementation is fraught with challenges. A 
primary concern is the inherent subjectivity and 
variability in the extraction of radiomics features. 
Despite the widespread adoption of platforms like 
PyRadiomics for standardized algorithm definition 
and image processing, inconsistencies in feature 
definitions remain a hurdle. The lack of uniformity in 
the radiomics feature extraction process is 
exacerbated by variations in equipment and sampling 
parameters across different institutions, coupled with 
the subjective approach to lesion delineation. 

Moreover, the manual segmentation of tumor lesions 
not only introduces a high degree of subjectivity but 
also necessitates substantial manpower resources. 
Recent initiatives, as seen in the works of Hodneland, 
Dybvik et al. [67] and Kurata, Nishio et al. [68], have 
ventured into utilizing deep learning techniques, such 
as convolutional neural networks, to automate the 
segmentation of EC lesions on MRI, thereby 
enhancing the reliability of radiomics feature 
extraction. As the domain of artificial intelligence (AI) 
progresses, the mainstream trajectory seems to be 
leaning towards automated extraction through AI 
networks. However, the learning curve associated 
with radiomics research is steep, and the scarcity of 
user-friendly tools hampers its widespread adoption, 
standing in stark contrast to the accessibility found in 
traditional clinical research. 

Moreover, fostering effective collaboration 
between radiology and clinical departments is of 
paramount importance. The existing gap in 
understanding between radiologists and the specific 
demands of clinical research, along with a limited 
grasp of the latest developments in specialized clinical 
research, sometimes culminates in diminished clinical 
relevance of certain radiomics studies. 

As we forge ahead in the big data era, the focus 
is shifting towards the creation of automated 
radiomics feature extraction systems and multimodal 
predictive platforms grounded in AI networks, 
promising to be a dominant force in EC research. 
These systems, characterized by their non-invasive 
nature and precision, hold the potential to 
significantly influence early screening, differential 
diagnosis, preoperative staging, the choice of 
adjuvant therapy, and monitoring of disease 
progression in EC, heralding a new chapter in the 
fight against this disease. 
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