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Abstract 

Background: Immune checkpoint genes (ICGs), which are the cornerstone of immunotherapy, influence the 
incidence and progression of clear cell renal cell carcinoma (ccRCC). It is important to note that there is not 
much data in the literature to determine how cuproptosis and antitumor immunity are related. 
Methods: On the basis of The Cancer Genome Atlas ccRCC dataset (n=526), cuproptosis-related ICGs 
(CICGs) were used to identify distinct molecular subtypes. Using the Cox regression method, a risk signature 
was constructed and externally validated using the ICGC (n=91) and primary ccRCC subgroups of GSE22541 
(n=24). The molecular and immune characteristics and efficacy of immunotherapy in the subgroups defined by 
the risk score were investigated. Four risk CICGs were verified through in vitro experiment. 
Results: We identified two unique molecular subgroups with substantial prognostic differences based on 17 
CICGs. The two subtypes clearly differ in terms of the tumor immune microenvironment (TME). A predictive 
risk signature (CD276, HLA-E, LGALS9, and TNFRSF18) was created and externally confirmed, and their 
expressions were validated by realtime PCR. The multivariate Cox regression analysis demonstrated that this 
signature could independently predict survival. Thus, a credible nomogram incorporating the signature, age, 
stage, and grade was constructed, and discrimination was confirmed using the C-index, calibration curve, and 
decision curve analyses. The underlying implications for immune checkpoint inhibitors, the landscape of the 
TME, and single-cell level localization are depicted. In addition, its accuracy in forecasting actual 
immunotherapeutic results has been proven (CheckMate025 and TCGA-SKCM cohorts). The sensitivity of the 
two risk groups to various drug-targeted therapy methods was analyzed. 
Conclusions: The data provided here provide the groundwork for creating customized therapeutic options 
for individuals with ccRCC. The findings also suggested that researching the cuproptosis-based pathway might 
improve ccRCC patient better prognosis, development of anti-tumor immunity, and therapeutic strategies for 
immunotherapy. 

Keywords: immune checkpoint, cuproptosis, clear cell renal cell carcinoma, immune microenvironment, prognosis, immune 
therapy. 

Introduction 
Renal cell carcinoma (RCC) is the fourteenth 

most prevalent disease in women and the ninth most 
common cancer in men in the world, and its 
increasing morbidity and mortality have raised 
serious concerns [1]. Despite the rapid advancements 

and extensive clinical utilization of antiangiogenic 
medications and immune checkpoint inhibitors (ICIs) 
in the management of cancer, including RCC, the 
median overall survival (OS) rate of RCC patients 
remains suboptimal [2]. Clear cell renal cell carcinoma 
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(ccRCC) is the predominant histological subtype 
of RCC, constituting approximately 75–80% of all 
diagnosed cases of RCC [1]. The use of ICI in 
immunotherapy has had a transformative impact on 
the treatment of ccRCC [3]. In 2021, the National 
Comprehensive Cancer Network (NCCN) issued a 
favorable rating and recommended ICI-based therapy 
as a first-line treatment for metastatic RCC [4]. 
Additionally, a well-conducted clinical trial has 
reported encouraging outcomes with ICI therapy, 
specifically anti-PD1 agent Pembrolizumab, in the 
perioperative (adjuvant or neoadjuvant) settings for 
ccRCC [5]. Due to the intricate etiology, distinctive 
characteristics of the tumor immune milieu in ccRCC, 
and the presence of tumor heterogeneity, a 
considerable number of patients exhibit resistance to 
ICI therapy. Hence, the ability to forecast the 
individual response of patients to immunotherapy 
can be achieved through the analysis of molecular or 
gene signatures and the utilization of specialized 
models. The association between immune checkpoint 
genes (ICGs) and the progression and metastasis of 
cancer has been established, suggesting that ICGs 
could serve as potential targets for ICI therapy. The 
examination of existing clinical and expression data 
pertaining to the combination of ICGs can contribute 
to the discovery of personalized therapeutic targets 
and the enhancement of current treatment strategies. 

Copper is a significant nutritional component 
that possesses oxidation-reduction (redox) properties, 
facilitating the development and proliferation of cells 
dependent on copper (cuproplasia), as well as 
inducing mitochondrial-mediated cell death 

(cuproptosis) beyond a specific threshold [6]. 
Copper-induced cell death refers to the mechanism by 
which copper molecules directly interact with 
lipoylated constituents of the tricarboxylic acid cycle. 
This interaction leads to the aggregation of lipoylated 
proteins and subsequent impairment of iron-sulfur 
cluster proteins. Consequently, proteotoxic stress 
ensues, ultimately resulting in cellular demise. This 
phenomenon has been demonstrated by Tsvetkov et 
al. in their research [7]. The researchers discovered 
that the process of cell death triggered by copper is 
distinguishable from all established regulatory 
mechanisms of cell death, such as apoptosis, 
ferroptosis, pyroptosis, and necroptosis. The authors 
proposed the term "cuproptosis" [7] to designate this 
previously unidentified mechanism of cell death. The 
relationship between cuproptosis and antitumor 
immunity remains unexplored in current scientific 
literature. The investigation of the co-expression 
association between genes associated to cuproptosis 
(CRGs) and immune checkpoint genes (ICGs) can 
provide valuable insights into the interplay between 
cuproptosis and the immune response against tumors. 

The present study examined the expression 
levels of cuproptosis-related ICGs, investigated the 
association between ICGs and the prognosis of 
ccRCC patients, explored the influence of the tumor 
microenvironment (TME), and assessed the 
responsiveness to immunotherapy. The aforemen-
tioned results have the potential to make significant 
contributions towards the advancement of tailored 
therapy for ccRCC. The methodology employed in 
this investigation is visually depicted in Figure 1. 

 

 
Figure 1. Workflow of the study. 
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Materials and Methods 
Data source 

The Cancer Genome Atlas (TCGA) (https:// 
portal.gdc.cancer.gov) was utilized to collect 
RNA-seq (FPKM) data for ccRCC (n = 539) and 
neighboring nontumorous kidney (n = 72) samples. 
The clinicopathological characteristics of patients with 
ccRCC (n = 526), including OS, were also obtained 
from TCGA database. Based on the patient 
identification number, we checked the patients’ 
transcriptome data with their clinical information and 
excluded the data for patients whose information did 
not match. Complete gene expression profiles were 
obtained for 526 patients with ccRCC. We accessed 
the International Cancer Genome Consortium (ICGC) 
database (https://dcc.icgc.org/projects/LIRI-JP) to 
obtain the mRNA expression profiles (normalized 
read count) and clinical information of ccRCC patients 
(n=91). GSE22541 contains 68 patients, of whom 24 
had a primary ccRCC diagnosis. This study employed 
data from 24 patients in the GSE22541 dataset to 
verify a risk model. We used GSE73731, which 
compares 265 ccRCC patient datasets, to validate the 
risk model. Pancancer data downloaded from the 
Xena database (https://xenabrowser.net/) were used 
for risk model prognosis validation. We received the 
raw "CELL" file from GEO (https://www.ncbi 
.nlm.nih.gov/geo/), normalized the quantiles, and 
adjusted the background. The batch impact of the 
merged dataset is then removed using SVA's R tool. 

Identification of cuproptosis-related immune 
checkpoint genes 

In previous research, thirteen cuproptosis- 
related genes (CRGs) [7] and 79 immunological 
checkpoint genes (ICGs) [8] were identified; the entire 
list of these genes is included in Table S1. The 
association between the expression of CRGs and 
related ICGs in malignant tissues of the TCGA ccRCC 
cohort was then determined by calculating Pearson's 
correlation coefficients. Cuproptosis-related immune- 
checkpoint genes (CICGs) were discovered using 
p<0.0001 and Pearson's correlation coefficient 
absolute values larger than 0.30. 

Unsupervised clustering for differentially 
expressed prognostic CICGs 

Using the "edgeR" R package, precancerous and 
cancerous tissues in TCGA cohort were screened for 
differentially expressed CICGs. The screening criteria 
were false discovery rate (FDR) <0.0001 and 
|log2FC|≥1. Differential expression was visualized 
using a heat map. Among the CICGs, predictive genes 
were identified using univariate Cox regression 

analysis (p <0.05). Based on these predictive CICGs, a 
consensus unsupervised clustering analysis approach 
was applied to identify distinct molecular groupings. 
To cluster the data, the "ConsensusClusterPlus" R tool 
was used, and the following criteria were applied: 
first, the curve of the cumulative distribution function 
(CDF) expanded gradually and smoothly; second, 
there were no groups with small sample numbers. 
Clustering ultimately increased the intragroup 
correlation while lowering the intergroup correlation. 
Using a heatmap, the differential expression patterns 
of CICGs among clusters were revealed. Using the 
Kaplan–Meier curve created by the "survival" and 
"survminer" R packages, the variance in OS between 
subtypes was analyzed. 

Differentially expressed genes identification 
and functional annotation 

Using R's "limma" package with a fold-change 
threshold of 2 and an adjusted p-value of 0.05, the 
differentially expressed genes (DEGs) between 
clusters were discovered. The DEGs were shown 
using a volcanic plot. Using the "clusterprofiler" 
package in R, functional enrichment analysis was 
performed on DEGs to further analyze their likely 
activities and identify associated gene functions and 
enriched pathways. 

Construction of the cuproptosis-related 
immune-checkpoint gene signature 

To avoid overfitting the model, univariate 
variables (p < 0.05) were included in the least absolute 
shrinkage and selection operator (LASSO) analysis, 
which was used to further select important predictive 
features. The optimized model was developed using a 
10-fold cross-validation strategy. After calculating the 
risk score, the following regression coefficients were 
calculated: 

Risk score = ∑(Expression of each gene ∗
 corresponding coefficients). 

Based on the median risk score, the patients in 
TCGA cohort were separated into low- and high-risk 
groups, and OS was compared between the groups 
using the Kaplan–Meier method and log-rank test. 
Using the "survivalROC" R package, the area under 
the time-dependent ROC curve (AUC) was calculated 
to measure the prediction accuracy of the risk score. 
To validate this prognostic model, the risk score for 
each patient in the external test cohorts (ICGC and 
primary ccRCC subgroup of GSE22541) was gene-
rated in the same way to ensure the consistency of the 
model. 

Cell Culture and Treatment 
The human renal proximal tubule epithelial cells 
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(HK-2 cells) and renal clear cell carcinoma cell lines 
(786-0 and Caki-1) were procured from the American 
Type Culture Collection (ATCC) located in Manassas, 
VA, United States. The cells were subjected to 
incubation at a temperature of 37°C in an environ-
ment with 5% CO2 concentration and high humidity. 
They were regularly grown in RPMI 1640 or DEM, 
both of which were supplemented with 10% fetal 
bovine serum (Invitrogen, Carlsbad, CA, USA). 

RNA Extraction, Reverse Transcription, and 
Quantitative Real-time PCR (qRT-PCR) 

A spectrophotometer is used to determine the 
quantity and quality of total RNA after it has been 
extracted from the aforementioned cells using the 
total RNA extraction micro-Kit (RNT411-03, Guang-
dong, China). 

Next, complementary DNA (cDNA) was 
generated utilizing SuperScript II Reverse Transcrip-
tase, oligo 18dT, and random primers (hexamers) 
from Invitrogen. The qRT-PCR experiment was 
conducted using a Roche LightCycler 480 sequence 
detection system, employing the following conditions: 
an initial predenaturation step at 95 °C for 30 seconds, 
followed by 40 cycles of denaturation at 95 °C for 5 
seconds, and annealing and extension at 60 °C for 30 
seconds. The experimental approach employed 
involved the utilization of human glyceraldehyde-3- 
phosphate dehydrogenase (GAPDH) as the consti-
tutive control. The quantification of gene expression 
levels was carried out utilizing the 2-ΔΔ CT method. 
The primer sequences employed for qRT-PCR were as 
follows: CD276 sense, CTGGCTTTCGTGTGCTG 
GAGAA; and CD276 antisense, GCTGTCAGAGTGT 
TTCAGAGGC. HLA-E sense, CGGCTACTACAATC 
AGAGCGAG; HLA-E antisense, AATCCTTGCCG 
TCGTAGGCGAA. LGALS9 sense, CGTCAATGGCT 
CTGTGCAGCTGTC; and LGALS9 antisense, 
AGATCCACACTGAGAAGCTCTGGC. TNFRSF18 
sense, CCAGTGTATCGACTGTGCCTCG; and 
TNFRSF18 antisense, CACAGCGTTGTGGGTCTT 
GTTC. PCR reactions for each sample were performed 
in triplicate. All results are presented as the mean ± 
standard deviation (SD). 

Analyses of the risk signature’s clinical 
correlation, robust nomogram construction 
and evaluation 

Using heatmaps and boxplots, the relationships 
between the risk score and clinical factors (age, grade, 
stage, T, N, M) were compared. In a stratified study, it 
was determined whether the risk score maintained its 
predictive potential across distinct age, stage, and 
grade subgroups. Independent risk variables were 
identified using univariate and multivariate Cox 

regression analyses (p < 0.05). The prognostic 
signature was then confirmed using the ICGC and 
GSE22541 (primary subgroup) databases using the 
same risk score calculation formula and statistical 
analysis methods (p < 0.05). The "rms" package in R 
was used to construct a prognostic nomogram, and 
the calibration curve was utilized to evaluate the 
nomogram's prediction ability. The concordance 
index was used to evaluate the predictive power of 
the signature using the bootstrap approach with 1,000 
resamples. The predictive accuracy of the nomogram 
was assessed using time-dependent ROC curves. The 
predictive value between projected 3-, 5-, and 10-year 
survival events and actual observed outcomes was 
illustrated using nomogram calibration plots, and 
decision curve analysis (DCA) was utilized to 
evaluate the validity of the signature. 

Principal Component Analyses 
We used principal component analysis (PCA) to 

minimize the dimensions and identify renal cancer 
patients with varying risk levels. For t-distributed 
stochastic neighbor embedding (t-SNE) analysis, the 
"Rtsne" package was used, while the prcomp function 
from the "stats" package was utilized for PCA. 

Immune status assessment 
Using the single-sample gene set enrichment 

analysis (ssGSEA) technique, the scores of tumor 
microenvironment (TME) cells in each ccRCC sample 
were determined [9]. Immunological and stromal 
scores for each patient were determined using the 
ESTIMATE method. The fractions of 22 human 
immune cell types in each TCGA ccRCC sample were 
determined [10]. The expression levels of members of 
the human leukocyte antigen (HLA) family and 
immune checkpoint markers were compared between 
low- and high-risk groups. Several key TME 
immunosuppressive genes, including IL10, TGF-b, 
FOXP3, IL6, and FAP, were chosen to compare the 
expression level between the high-risk and low-risk 
groups using boxplots to elucidate the association 
between risk signature and TME immunosuppressive 
variables in ccRCC. 

Tumor Immune Single-cell Hub (TISCH) 
collected data from GEO and ArrayExpress[11] to 
create its scRNA-seq atlas, a TME-focused single-cell 
RNA-seq resource. TISCH2 (http://tisch.comp- 
genomics.org) has 190 datasets and 6,297,320 cells 
from cancer patients and healthy donors [12], 
allowing for the exploration of TME across several 
cancer types. Using TISCH2 datasets, we revealed the 
single-cell-level risk gene heterogeneity among 
immune cells in ccRCC.  
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Forecasting immunotherapy response and 
validation of real-world cohorts 

The immunophenoscore (IPS) analysis was 
performed randomly using machine learning by four 
classes of genes that determine immunogenicity: 
effector cells, suppressive cells, major histocompa-
tibility complex molecules, and immunomodulators 
or checkpoints; its value increased as immunogenicity 
increased [13]. The Cancer Immunome Atlas (TCIA) 
offered ccRCC patient IPSs (https://tcia.at/home). 
Immune Cell Abundance Identifier (ImmuCellAI) is a 
computer approach that was published in 2020 to 
predict the response to immune checkpoint inhibition 
based on the abundance of immune cells, especially 
various T cell subsets [14]. Using the Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm (http:// 
tide.dfci.harvard.edu/), simulation experiments were 
conducted to comprehend the essential pathways 
involved with tumor immune evasion and to estimate 

the response potential of tumor immunotherapy. 
In addition, two transcriptomic datasets 

containing clinical data from patients with advanced 
clear cell renal cell carcinoma treated with the anti–
PD-1 agent Nivolumab (CheckMate025 cohort [15]) 
and patients with advanced melanoma treated with 
various types of immunotherapy (TCGA-SKCM) were 
downloaded and analyzed to determine the response 
to immunotherapy and the predictive value of the risk 
score [16]. 

Evaluation of the sensitivity of 
chemotherapeutic and molecular medicines 

In order to predict the response to chemotherapy 
and molecular drugs, the "pRRophetic" package was 
used to generate the risk score; the half-maximal 
inhibitory concentration (IC50) was obtained using 
ridge regression between the low- and high-risk 
groups for 251 popular chemotherapeutic agents. 

 
 

 
Figure 2. Identification of prognostic differentially expressed CICGs and grouping of molecular subtypes. a. Heatmap depicted the expression difference of 
CICGs between normal and tumor tissues in TCGA ccRCC cohort; b. Forest plot depicted the unicox results of 4 prognostic CICGs; c. Identification of molecular subtypes 
based on prognostic CICGs (showing k=2, 3, and 4); d. Consensus cumulative distribution function (CDF) curve for 2-9 curves; e. Kaplan–Meier curve for overall survival of all 
ccRCC patients with two cluster subtypes (log-rank test, p=0.0003); f. Heatmap displayed the expression difference of CICGs between Cluster C1 and C2 in TCGA ccRCC 
cohort; g. Heatmap illustrated the relationships between clinicopathologic features, and two cluster subtypes. 
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Statistical analysis 
R (version 4.2.0) and RStudio (version 

2022.12.0+353 for macOS) were utilized to conduct 
statistical analyses. The Mann–Whitney U test was 
used to compare differences between two groups. For 
the study of differences between more than two 
groups, the Kruskal-Wallis test was utilized. The 
chi-square test was used to assess the difference in 
immune response frequency distributions. The 
Kaplan–Meier method was used to compare OS and 
disease-free survival (DFS) differences across groups. 
p<0.05 was deemed statistically significant in all 
two-tailed tests, unless otherwise noted. 

Results 
Identification of prognostic differentially 
expressed CICGs and subtype clustering 

The expression of 17 ICGs was associated with 
that of CRGs (Table S2). A total of 16 ICGs exhibited 
differential expression between tumor and normal 
tissues (Table S3), all of these ICGs were highly 
elevated in tumor tissues (Figure 2a). Four CICGs, 
including CD276, HLA-E, LGALS9, and TNFRSF18, 
exhibited predictive significance in a Unicox analysis 
of these differentially expressed CICGs (Figure 2b). 

To further investigate the expression of the four 
CICGs in ccRCC, we categorized patients with ccRCC 
using a consensus clustering algorithm (Figure 2c). 
Based on the clustering criteria (Figure 2d), we 
determined that k = 2 was ideal for sorting the entire 
cohort. Thus, two subgroups, named Clusters C1 and 
C2, were found, with Cluster C1 containing 278 cases 
and Cluster C2 containing 248 cases. Kaplan-Meier 
analysis of survival indicated that overall survival 
differed significantly between the two subtypes, and 
Cluster C2 had a significant survival disadvantage 
(log-rank test, p=0.0003, Figure 2e). The heatmap 
indicates that the expression of the 17 CICGs in the 
two clusters varied significantly (Figure 2f). In 

addition, the association between the two subtypes 
and a variety of clinicopathological parameters 
(survival status, age, gender, grade, laterality, stage, 
T, M, and N) was investigated, and the CICGs 
subtypes were linked to grade, laterality, stage, T, M, 
and survival status (Figure 2g). 

Determination of the DEGs between two 
clusters 

To investigate the probable biological role of 
each subtype of CICGs in ccRCC, the "limma" R 
program was used to determine the DEGs between 
the two clusters. The DEGs associated with the CICGs 
subtype were clustered on the volcano plot (Figure 
3a). Gene ontology enrichment analysis revealed that 
a large number of immunological and cytokine- 
related processes were significantly enriched in the 
DEGs (Figure 3b, Table S4). Multiple immunological 
and cancer-related KEGG pathways were enriched, 
including cytokine interaction, chemokine signaling, 
Th17 cell differentiation, NF-kappa B signaling 
pathway, PD-L1 expression, and PD-1 checkpoint 
pathway in cancer. (Figure 3c, Table S5). 

Immune status difference between two 
clusters 

To investigate variations in the composition of 
TME-infiltrating cells between the two clusters, we 
evaluated the TME score (stromal score, immune 
score, and estimate score) of the two subtypes using 
the ESTIMATE package. We designated C1 as the low 
immune checkpoint gene difference (ICD) group, and 
C2 as the ICD high group. The results indicated the 
lowest TME scores in the patients in the low ICD 
group (Figure 4a). Regarding tumor purity, the low 
ICD group had the highest score compared to the high 
ICD group (Figure 4b). Numerous immune cells, such 
as plasma cells, T cells CD8, T cells CD4 memory 
resting T cells, showed differences in expression 
between the two groups (Figure 4c). 

 

 
Figure 3. identification of DEGs between two clusters and enrichment analysis. a. volcano plot depicted the differentially expressed genes between two clusters 
(|logFC|>2 and p value <0.05); GO enrichment analysis (b) and KEGG enrichment analysis (c) of DEGs. 
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Figure 4. Immune status difference between two clusters. a. Correlations between different clusters and immune score, stromal score, and ESTIMATE score; b. 
Correlations between different clusters and tumor purity; c. Tumor immune cells difference between two clusters; d,e. Comparison of the ssGSEA scores for immune cells (d) 
and immune functions (e) for patients between the two clusters. The line in the box represents the median value. f,g. The expression of HLA family members (f) and immune 
checkpoints genes (g) between the two clusters. 

 
We examined the enrichment score of immune 

cells and functions in the two groups using ssGSEA 
and found that Figure 7a, almost all immune cells and 
immune functions were suppressed in the ICD low 
group compared to the ICD high group (Figure 4d, e, 
respectively). 

Considering the importance of immunotherapies 
based on HLA and checkpoint inhibitors, we analyzed 
the differences between the two ICD groups in terms 
of HLA family members and immune checkpoint 
expression. The majority of HLA members had high 
expression in the ICD high group (Figure 4f); with 
regard to checkpoints, we discovered that all these 

genes displayed differential expression between two 
groups, with CTLA4, PDCD1, and PD-L1 (CD274) 
demonstrating high expression in the ICD high group 
(Figure 4g).  

Prognostic risk signature construction and 
validation 

To prevent overfitting of the model, LASSO 
analysis was performed on the four predictive CICGs 
in the TCGA cohort (Figure S1), which demonstrated 
that the four CICGs were independent prognostic 
markers for patients with ccRCC. To predict the OS of 
each ccRCC patient, a 4-CICGs signature (CD276, 
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HLA-E, LGALS9, and TNFRSF18) was created. Table 
S6 presents the correlation coefficients. 

The patients were classified into high- and 
low-risk groups based on the median risk score. 
Kaplan–Meier curves indicated that the high-risk 
group in TCGA cohort had a worse prognosis (Figure 
5a). The scatter plot suggested that ccRCC patients 
with a high-risk score had a poorer survival rate than 
those with a low-risk score (Figure 5b), and the 
risk-score distribution map was consistent with the 
classification of patient groups (Figure 5c). The risk 
gene expression heatmap revealed remarkable 
expression disparities between the high- and low-risk 
groups for the four CICGs (Figure 5d).  

To externally validate the predictive ability of 
the risk signature, the risk scores of patients in the 

ICGC and GSE22541 cohorts (24 primary ccRCC 
patients) were computed. Kaplan-Meier survival 
analysis of OS in the ICGC cohort showed that the 
outcome was comparable to that of the TCGA cohort 
(Figure 5e). Concerning GSE22541, survival analysis 
revealed that the high-risk group had a significantly 
worse DFS than the low-risk group (Figure 5i). 
Similarly, in the ICGC and GSE22541 cohorts, the 
high-risk group had a lower survival rate than the 
low-risk group, and the risk-score distribution map 
verified that the high-risk group had a higher risk 
score (Figure 5fg, jk, respectively). The heatmaps 
illustrate consistent expression patterns of the four 
risk CICGs in the two cohorts (Figure 5h, l, 
respectively). 

 

 
Figure 5. Construction and validation of prognostic risk signature, and expression of CRGs. The construction of risk signature in TCGA cohort (a-d), validation in 
ICGA cohort (e-h) and primary ccRCC group in GSE22541 cohort (i-l). Kaplan–Meier curves for OS of the patients from the high- and low-risk groups (a,e,i); Scatter plot 
showing the correlation between the survival status and risk score of ccRCC patients (b,f,j); Risk score distribution plot showing the distribution of high-risk and low-risk ccRCC 
patients (c,g,k); Heatmap showing expression of the for CICGs between the high- and low-risk groups (d,h,l). m. Sankey diagram showing the degree of connection between 
the CRGs, ICG, and risk signature type (protective or risk); n. The co-relationship of four risk genes in the signature; o. Heatmap showing the co-expression relationship of 
cuproptosis-related genes and four signature genes; p. The expression levels of four risk genes in vitro by qRT-PCR. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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 Eleven cuproptosis-related genes were linked to 
four CICGs. The sankey graphic reveals a broad and 
intricate relationship between them (Figure 5m). 
According to the correlation analysis, the four CICGs 
were positively associated with each other (Figure 
5n). When we plotted the correlation between the four 
CICGs and 11 CRGs, we found that the majority were 
negatively associated (Figure 5o). 

Finally, the expression levels of four CICGs were 
verified by qRT- PCR in the normal and tumor cells 
(Figure 5p). The results showed that the overall trend 
in the expression levels of all CICGs increased 
obviously in ccRCC cell lines (Caki-1, and 786-O) 
compared with normal renal proximal tubule 
epithelial cells (HK-2), which are consistent with our 
previous bioinformatics analysis based on public 
database. 

PCA, Stratified Survival Analysis and 
correlation between the risk score and 
Clinicopathological Characteristics  

The PCA schematic diagram depicts two distinct 
risk categories for ccRCC patients based on total gene 
expression, expression of cuproptosis genes, 
expression of genes associated to immunological 
checkpoints, and expression of four risk CICGs 
(Figure 6a-d, respectively). 

We performed stratified survival analysis of 
clinicopathological factors including age (<=60 years 
vs. >60 years), gender (Male vs. Female), grade (Grade 
1-2 vs. Grade 3-4), stage (Stage I-II vs. Stage III-IV), T 
(T1-2 vs. T3-4), M (M1 vs. M0), and N (N1 vs. N0) to 
evaluate the predictive ability and stability. The 
findings of Kaplan-Meier survival analysis 
encompassing diverse clinical characteristics further 
demonstrated that OS in high-risk group was poorer 
than that in low-risk group (p< 0.01, except patients in 
N1) (Figures S2). 

There were strong connections between the risk 
scores and the aforementioned clinicopathological 
parameters of ccRCC (Figure 6e), i.e., as the stage, 
grade, metastasis, and mortality increased, so did the 
risk score (Figure 6f, all p<0.001). 

Constructing and Assessing the Nomogram 
To examine if the risk score was an independent 

prognostic factor in patients with ccRCC, univariate 
and multivariate Cox regression analyses were 
conducted utilizing the patients' clinical features and 
risk scores. This was confirmed in TCGA, ICGC, and 
GSE22541 cohorts (Figure 6g). The nomogram was 
then created utilizing the independent prognostic 
parameters to predict the 1-, 5-, and 10-year OS of 
patients with ccRCC (Figure 6h). The time-dependent 
AUC analysis revealed that the nomogram's 

predictive value was significantly greater than that of 
age, stage, and grade from 1 to 10 years (Figure 6i). 
The C-index plot demonstrated the same trend 
(Figure 6j). We utilized the calibration curve to 
determine if the actual prognosis value matched the 
projected value of the nomogram and found that the 
1-, 3-, 5-, and 10-year survival rate calibration curves 
were compatible with the nomogram (Figure 6k). The 
DCA curves also demonstrated that the nomogram 
had a positive predictive effect and greater clinical 
value than stage, age, and grade (Figure 6l). 

Correlation between the risk score and tumor 
infiltrating immune cells 

Comparing the TME scores of each risk score 
group, we discovered that the group with the 
high-risk score had significantly higher TME scores 
and reduced tumor purity (all p<0.01, Figure 7a, b, 
respectively). Risk score was correlated positively 
with Macrophages M0, T cells regulatory, plasma 
cells, T cells follicular helper, and T cells CD4 memory 
activated, and negatively with mast cells resting, 
dendritic cells activated, monocytes, macrophages 
M1, eosinophils, and dendritic cells activated (all 
p<0.05, Figure 7c). Many immune cells (Figure 7d) 
and immunological functions (Figure 7e) displayed 
significant variations between the two risk groups, 
with the high-risk group having a larger number of 
activated immune cells and immunological functions. 
Given the significance of checkpoint inhibitor-based 
immunotherapies, we investigated further the 
variations in immune checkpoint expression between 
the two groups. There were significant variations in 
the expression of CD44, CD276, CTLA4, PDCD1, 
CD274, LGALS9, and TNFSF14 between the two 
groups of patients (Figure 7f, all p<0.05). Similar 
outcomes were also observed in two additional 
validation datasets (GSE22541, GSE73731, Figure S3). 
As for the expression difference of HLA members 
between two groups, we observed that the expression 
of HLA-A/B/C/E/F/G/H/J was significantly differ-
ent (Figure 7g, all p<0.05). Similar outcomes were also 
observed in two more validation sets (Figure S4). 
These findings suggest that our risk score may have a 
correlate with the patient's responsiveness to 
medicines targeting the aforementioned checkpoints. 

As a result, we continued to investigate the 
relationship between the risk signature and the 
expression level of TME immunosuppressive factors, 
including the key cytokines of immunosuppressive 
TME: cancer-associated adipocytes activated marker 
IL-6 [17], IL-10 and TGF-b [18], Treg marker FOXP3 
[19], and CAF marker FAP [20]. In the high-risk group 
of the TCGA cohort, the expression levels of the five 
cytokines and markers listed above were elevated 
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(Figure 7h). Except for IL10, a similar trend was seen 
in the external validation dataset (GSE73731) (Figure 
7i). Collectively, the aforementioned findings 
suggested that ccRCC patients with a high-risk 

score may have a strong immunosuppressive TME, 
which led to the immune evasion of tumor cells and 
the poor prognosis. 

 

 
Figure 6. PCA analysis, nomogram construction and evaluation. PCA analysis for the entire gene expression (a), expression of CRGs (b), expression of ICGs (c), and 
expression of four risk CICGs (d) in high and low risk groups in ccRCC patients; e. Heatmap showing the prognostic signature and clinicopathological features of the low- and 
high-risk patients with ccRCC; f. Correlation analyses of the prognostic signature with the clinicopathological characteristics of the patients with ccRCC according to the grade, 
stage, M, N, T, and survival status, respectively (all P<0.01); g. Univariate and multivariate Cox survival analysis showed that risk signature was an independent prognostic factor 
in three cohorts, respectively (TCGA, ICGC, and GSE22541); h. Prognostic nomogram for predicting 1-, 5-, and 10-year OS of patients with ccRCC; i,j. Time-dependent ROC 
curves (i) and C-index curves (j) to compare AUC values of the nomograms and other clinical factors within a range of time; k. Calibration curves of nomogram displayed the 
concordance between predicted and observed 1-, 3-, 5-, and 10-year OS; l. DCA curves for the nomogram and stage, age, grade. 
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Figure 7. Correlation between the risk signature and the immune microenvironment. a. Correlations between risk group and immune score, stromal score, and 
ESTIMATE score; b. Correlations between risk groups and tumor purity; c. Correlations between risk score and immune cell type based on CIBERSORT; d,e. Comparison of 
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the ssGSEA scores for immune cells (d) and immune functions (e) for patients between the high- and low-risk groups; f,g. The expression of immune checkpoints genes (f) and 
HLA family members (g) between the high- and low-risk groups; h,i. Expression of TME immunosuppressive cytokines and markers in TCGA (h) and GSE73731 (i) cohorts. 

 
Figure 8. Single-cell level evaluation of risk genes by TISCH2 database. a,b,c. The cell types and their subgroup distribution in KIRC GSE111360dataset; d. 
Distribution of four risk genes in different cells in KIRC GSE111360 dataset; e. Distribution of four risk genes’ expression in different cell types using violin plot in KIRC 
GSE111360 dataset. 

 

Single-Cell level analysis of risk signature 
Herein, we intended to localize four risk genes at 

the level of a single cell in order to investigate their 
probable relationship with immune cells. By 
examining the TISCH2 database, we determined that 
all four genes were expressed in subpopulations of 
immune single cells. 24 clusters (Figure 8a) and 12 cell 
types (Figure 8b) were detected in KIRC GSE111360, 
including CD4 T conventional, CD8 T cell, 
monocyte/macrophage cell, dendritic cell, natural 
killer cell, Treg cells, etc., with monocyte/macrophage 
cells exhibiting the highest cell numbers (Figure 8c). 
And all of the 12 cell types exhibited four risk gene 
expression (Figure 8d,e), with the mast cell subgroup 
cells displaying the greatest abundance of CD276; 
CD4 T conventional cell, CD8 T cell, as well as natural 
killing cell subgroups showed the obviously more 
abundance of HLA-E; as to LGALS9 and TNFRSF18, 
the abundance subgroup cells are mono/macrophage 
cell, and natural killing cell, respectively (Figure 8e). 
The preceding single-cell analyses indicated that the 
risk genes were strongly expressed in all immune cell 
subsets of ccRCC, hence corroborating the association 

between risk score and TME. 

Estimating immunotherapeutic advantages 
Using Immunophenoscore, we subsequently 

assessed the responsiveness of subgroups stratified by 
risk score to immune checkpoint inhibitors. The 
low-risk group had a higher IPS, indicating stronger 
immunogenicity of tumors and greater sensitivity to 
ICI, as demonstrated by our findings (Figure 9a). 
Using the ImmuCellAI and TIDE algorithms, we 
assessed the potential immunotherapy response of 
each patient. Patients in the low-risk group were more 
likely to react to immune checkpoint blockade than 
those in the high-risk group (13% vs. 22%) (Figure 9b). 
Respondents had a lower risk score than 
non-respondents (p<0.001; Figure 9c). Patients in the 
low-risk group had lower TIDE scores, indicating a 
decreased possibility of immune evasion. The lower 
the TIDE score, the lower the likelihood of immune 
evasion and the greater the likelihood that the patient 
will benefit from ICI therapy (Figure 9d). Collectively, 
these data suggest that the predictive risk signature 
may predict the potential response to immunotherapy 
in patients with ccRCC; individuals in the lower-risk 
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group had more prospective immunotherapy 
benefits. 

We investigated the predictive value of the risk 
score in 30 distinct TCGA cancer cohorts containing 
9397 tumors (Table S7). Except for ccRCC, the risk 
score was validated as a favorable prognostic 
biomarker in six independent TCGA cohorts (Figure 
S5), including mesothelioma, adrenocortical carci-
noma, liver hepatocellular carcinoma, head and neck 
squamous cell carcinoma, stomach adenocarcinoma, 
and kidney renal chromophobe. 

Monoclonal antibodies that suppress the T-cell 
inhibitory molecules PD-L1 and PD-1 have emerged 
as cancer therapies with extraordinary and synergistic 
survival benefits. Next, we examined the predictive 
value of the risk score for immune checkpoint 
treatment in the real world by classifying patients in 
the TCGA SKCM and Checkmate025 cohorts 
(anti-PD1 subgroup) into high- and low-risk 
categories. In the TCGA SKCM (Figure 9e) and 
Checkmate025 cohorts (Figure 9f), patients with a 
high-risk score had a shorter OS than those with a 

 

 
Figure 9. The risk score could predict patients’ immunotherapeutic benefit. a. The association between IPS and the risk score in ccRCC patients of TCGA cohort; b. 
The differences in response results to immunotherapy between low-risk and high-risk groups by ImmuCellAI algorithm; c. The scatter plot shows the correlation between 
immunotherapy responsiveness and risk score in ccRCC patients by ImmuCellAI algorithm; d. TIDE score difference in high and low risk groups; e, f. K–M survival analysis of the 
risk subgroups in TCGA SKCM cohort(e), and CheckMate025 cohort (anti-PD1 subgroup) (f); g, h. ROC curves and their AUC values for risk score in TCGA SKCM cohort(g), 
and CheckMate025 cohort (anti-PD1 subgroup) (h); i, k. Proportions of anti-multiple immunotherapy response (l) and anti-PD1 immunotherapy response (k) in high and low risk 
groups in TCGA SKCM cohort, and CheckMate025 cohort (anti-PD1 subgroup); j. The scatter plot shows the correlation between immunotherapy responsiveness and risk 
score in SKCM cohort; l, m. The half-maximal inhibitory concentration (IC50) of drugs for targeted therapy and chemotherapy in high- and low-risk groups in the TCGA cohort. 
The corresponding linear correlation plots between risk score and drugs were showed below. 
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low-risk score. In TCGA SKCM and Checkmate025 
cohorts, the predictive significance of the risk score for 
checkpoint immunotherapy was also verified (Figure 
9g, h, respectively). We evaluated the clinical 
applicability of risk score in response to 
immunotherapy. Patients in the low-risk group were 
more likely to benefit from immune checkpoint 
therapy (TCGA SKCM cohort, two-sided, p<0.0001, 
Figure 9i). The risk score was lower in respondents 
than in non-responders (p<0.0001; Figure 9j). 
Although the difference was not statistically 
significant, the Checkmate025 cohort showed a 
similar general tendency (Figure 9k). 

Chemotherapeutic and molecular drug 
sensitivity prediction 

Using the "pRRophetic" R package, we studied 
the association between the risk score and sensitivity 
to chemotherapy and targeted therapy medicines in 
patients with ccRCC. The calculated IC50 values of 63 
distinct medications varied considerably between the 
two risk groupings (all p<0.01, Table S8), as shown by 
our findings. 42 drugs were more sensitive in the 
low-risk group than in the high-risk group, such as 
p38 MAPK inhibitor (KIN001-102), AKT inhibitor 
VIII, mTOR inhibitor (Rapamycin), and VEGFR2 
inhibitor (XL-184) (Figure 9l); 21 drugs were more 
sensitive in the high-risk group than in the low-risk 
group, such as DHFR inhibitor (Pyrimethamine), 
Mitomycin C, and VEGFR2 inhibitor (XL-184) (Figure 
9m). These results indicated that the risk score might 
be utilized to predict chemotherapy and targeted 
treatment. 

Discussion 
In normal situations, the immune system of the 

host, specifically cytotoxic T lymphocytes (CTLs) and 
natural killer (NK) cells, possess the ability to identify 
and eliminate malignant cells [21]. However, the 
immune response is intricately regulated by various 
activating and inhibitory mechanisms in order to 
prevent the occurrence of autoimmune events and 
maintain a balanced state of immunological 
dynamics. The activation of the immunological 
checkpoint (IC) receptors, which are present on 
cytotoxic T lymphocytes (CTL) and natural killer (NK) 
cells, occurs when they interact with IC ligands 
expressed on tumor cells or immunosuppressive cells. 
This interaction initiates the activation of the IC 
signaling pathway, which serves as the fundamental 
mechanism regulating the immune response. 
Currently, the tumor exhibits immunological evasion 
by inhibiting cytotoxicity and immune surveillance 
[22]. Furthermore, the presence of tumors might 
impede the immune response against them by 

increasing the expression of immune checkpoints 
(ICs), leading to the development of an immunosup-
pressive tumor microenvironment [23]. Tsvetkov et al. 
(7) have elucidated a novel kind of cell death, known 
as cuproptosis, by effectively utilizing the 
pathophysiological importance of copper. This 
discovery holds promise for the development of a 
novel approach to anticancer therapy. The 
phenomenon of cuproptosis-induced cell death has 
attracted significant attention in the field of science in 
recent years. However, there is a limited amount of 
research that has investigated the interplay between 
cuproptosis, prognosis, and the immune response 
against tumors in ccRCC. In order to investigate the 
correlation between gene expression profiles, 
prognosis, and antitumor immunity in ccRCC, a 
prognostic risk signature was constructed. This 
signature was based on four cuproptosis-related 
ICGs. The data utilized for this work was obtained 
from The Cancer Genome Atlas (TCGA), International 
Cancer Genome Consortium (ICGC), and Gene 
Expression Omnibus (GEO) databases. It was 
established that the risk signature exhibited 
characteristics of an autonomous risk factor for 
overall survival (OS), leading to the development and 
evaluation of a resilient nomogram. The study 
conducted a comprehensive analysis of the tumor 
microenvironment (TME), comparing various aspects 
such as the TME's overall characteristics, specific 
genes related to disease progression (checkpoint 
genes), members of the HLA gene family, and 
immunosuppressive cytokines and markers present in 
the TME. This comparison was performed across 
different risk groups. Additionally, the study 
evaluated the sensitivity of patients with different 
expression signatures to immunotherapy in 
real-world settings, specifically focusing on patients 
from the SKCM and Checkmate025 cohorts. The aim 
was to gain a deeper understanding of the variations 
in anti-tumor immune responses and to assess the 
ability to predict patient response to immunotherapy. 

Renal cell carcinoma (RCC) is commonly 
recognized as a tumor with immunogenic properties. 
However, it has been observed that RCC can trigger 
the recruitment of immune-suppressive cells, such as 
regulatory T cells and myeloid-derived suppressor 
cells, into the tumor microenvironment (TME), 
leading to the impairment of immune responses. 
Numerous hypothetical processes have been 
postulated to elucidate the manner in which these 
diverse cell types entering tumors hinder the 
establishment of a potent immune response against 
the tumor. These mechanisms encompass the 
suppression of effector T cell and antigen-presenting 
cell function by the overexpression of inhibitory 
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factors, such as checkpoint molecules. The use of 
immune checkpoint inhibitors (ICIs) that specifically 
target the PD-1/PD-L1 pathway and cytotoxic 
CTLA-4 has brought about a significant shift in the 
therapeutic approach for RCC [24]. At present, the 
typical therapeutic approach entails administering 
this medication to individuals diagnosed with 
advanced RCC. In comparison to most other types of 
solid tumors that respond to anti-PD-1 treatment, the 
presence of a significant number of CD8+ T cells in 
ccRCC patients has previously been linked to a poorer 
prognosis [15, 25]. Hence, it is imperative to establish 
dependable biomarkers that can accurately assess the 
efficacy of checkpoint blockade treatments in order to 
optimize their therapeutic impact [24]. The patients 
classified as high-risk exhibited a bleak prognosis, 
while the application of TIDE and ImmuCellAI in 
predicting immunotherapy response indicated 
potential benefits for individuals categorized as 
low-risk. Likewise, a thorough examination of cohorts 
in real-world settings has confirmed the enduring 
predictive capability of the risk signature. 

The reaction to immune checkpoint inhibitors 
(ICIs) is contingent upon the interplay between tumor 
cells, immune cells, and other immunomodulatory 
factors within the tumor microenvironment. Previous 
studies have identified regulatory T cells (Tregs), 
Kupffer cells, as well as monocyte- and myeloid- 
derived macrophages as the primary cellular 
components accountable for inducing this immuno-
suppressive response. These mechanisms encompass 
the secretion of immunosuppressive cytokines, such 
as interleukin (IL)-10, as well as the mobilization of 
regulatory T cells (Treg cells) and CD4+ T helper 17 
(Th17) cells [24]. Previous studies have provided 
evidence that Th2 cells, which mostly secrete IL-2 and 
IL-10, play a role in promoting immunosuppression, 
tumor formation, and metastasis [26]. The findings of 
our analysis indicate a significant association between 
M0, Tregs, CD4 cells, T follicular helper cells, and the 
risk score, suggesting the presence of immunosup-
pression in persons belonging to high-risk categories. 
This observation highlights the necessity for a more 
focused examination of this specific demographic. 

As previously noted by researchers (27), there is 
a crucial need to conduct a more comprehensive 
examination of the mutual regulatory interaction 
between CRG and ICG, as it serves as the foundation 
for our effective therapeutic advancement. Recent 
research has introduced a novel algorithm known as 
the single-cell multi omics gene co-regulation 
algorithm. Additionally, the advancement of 
single-cell multi-omics technology has shown great 
potential [28]. The method presented in this study 
demonstrates a high level of efficiency in identifying 

co-regulatory programs, which can be utilized to 
elucidate molecular pathways and ascertain precise 
targets. Anticipation is held for forthcoming presen-
tations of comprehensive studies that center on CRG 
and ICG. Additionally, additional exploration and 
enhancement of novel technologies are expected to 
foster our progress. 

Notwithstanding the aforementioned, this study 
exhibits a number of shortcomings. This study 
focused solely on the examination of CRGs and ICGs, 
while not considering additional biomarkers 
associated with the immune system. Furthermore, 
there is significant variation in the abundance of 
immune cells among individuals, making it difficult 
to ascertain the extent to which gene expression levels 
are primarily influenced by the specific kind of 
immune cell. Despite conducting real-world 
validation for our risk signature in terms of prognosis 
and immunotherapy response, it is imperative to 
conduct extensive clinical sample studies in order to 
validate the prediction efficacy of the model. 

Conclusion 
In summary, a novel gene signature associated 

with cuproptosis-related immunological checkpoints 
was formulated to predict the prognosis of patients 
with ccRCC and to characterize the immune 
microenvironment. Anticipating immunotherapy 
responses is also feasible in patients. The 
aforementioned findings have the potential to make a 
valuable contribution towards the advancement of 
personalized treatment strategies for individuals 
diagnosed with ccRCC. Furthermore, it facilitates a 
more comprehensive comprehension of the 
significance of cuproptosis in determining patient 
prognosis and the development of antitumor 
immunity in individuals diagnosed with ccRCC. 

Abbreviations 
ccRCC: clear cell renal cell carcinoma; 
CRGs: cuproptosis-related genes; 
ICGs: immune-checkpoint genes; 
CICGs: cuproptosis-related immune-checkpoint 

genes; 
OS: overall survival; 
DFS: disease-free survival; 
DEGs: differentially expressed genes; 
LASSO: least absolute shrinkage and selection 

operator; 
AUC: area under the time-dependent ROC 

curve; 
PCA: principal component analysis; 
TME: tumor microenvironment; 
ICI: immune checkpoint inhibitor; 
PD1: programmed death 1; 



 Journal of Cancer 2023, Vol. 14 

 
https://www.jcancer.org 

3350 

PD-L1: programmed death ligand 1; 
CTLA4: CTL associated protein 4; 
IPS: immunophenoscore. 

Supplementary Material 
Supplementary figures.  
https://www.jcancer.org/v14p3335s1.pdf 
Supplementary tables.  
https://www.jcancer.org/v14p3335s2.xlsx 

Acknowledgements 
Funding 

The present study was supported by Liaoning 
Provincial Department of Education Scientific 
research fund project (general project, 2021, Grant No. 
LJKZ0752); 345 Talent Project of Shengjing Hospital. 

Ethics approval and consent to participate 
All data analyzed in this study were publicly 

accessible, so no Ethics statement was required. The 
policies and publication guidelines of the TCGA and 
ICGC databases were strictly followed. 

Availability of data and material 
Most of the data sets used and/or analyzed 

during the current study are publicly available data 
from TCGA, ICGC, XENA, CheckMate025 cohort, and 
Gene Expression Omnibus (GEO) databases 
(GSE22541, GSE73731). All data of the independent 
cohort in the current study were available from the 
corresponding authors in a reasonable request. 

Author contributions 
GL, YS, and LZ contributed to the conception 

and design of the study. FL, YG, FR, and LZ 
contributed to the analysis of database and writing, 
review of the manuscript. LC Zhu secured funding 
support and critically reviewed the manuscript. All 
authors read and approved the final manuscript. 

Competing Interests 
The authors declare that the research was 

conducted in the absence of any commercial or 
financial relationships that could be construed as a 
potential conflict of interest. 

References 
1. Nabi S, Kessler ER, Bernard B, Flaig TW, Lam ET. Renal cell carcinoma: a 

review of biology and pathophysiology. F1000Res. 2018; 7: 307. 
2. Liu YF, Zhang ZC, Wang SY, Fu SQ, Cheng XF, Chen R, et al. Immune 

checkpoint inhibitor-based therapy for advanced clear cell renal cell 
carcinoma: A narrative review. Int Immunopharmacol. 2022; 110: 108900. 

3. Wu Z, Chen Q, Qu L, Li M, Wang L, Mir MC, et al. Adverse Events of Immune 
Checkpoint Inhibitors Therapy for Urologic Cancer Patients in Clinical Trials: 
A Collaborative Systematic Review and Meta-analysis. Eur Urol. 2022; 81: 
414-25. 

4. Powles T, clinicalguidelines@esmo.org EGCEa. Recent eUpdate to the ESMO 
Clinical Practice Guidelines on renal cell carcinoma on cabozantinib and 
nivolumab for first-line clear cell renal cancer: Renal cell carcinoma: ESMO 

Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann 
Oncol. 2021; 32: 422-3. 

5. Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Chang YH, et al. 
Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N 
Engl J Med. 2021; 385: 683-94. 

6. Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, et al. Connecting 
copper and cancer: from transition metal signalling to metalloplasia. Nat Rev 
Cancer. 2022; 22: 102-13. 

7. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. 
Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 
2022; 375: 1254-61. 

8. Hu FF, Liu CJ, Liu LL, Zhang Q, Guo AY. Expression profile of immune 
checkpoint genes and their roles in predicting immunotherapy response. Brief 
Bioinform. 2021; 22. 

9. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic 
properties of tumors associated with local immune cytolytic activity. Cell. 
2015; 160: 48-61. 

10. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust 
enumeration of cell subsets from tissue expression profiles. Nat Methods. 
2015; 12: 453-7. 

11. Athar A, Fullgrabe A, George N, Iqbal H, Huerta L, Ali A, et al. ArrayExpress 
update - from bulk to single-cell expression data. Nucleic Acids Res. 2019; 47: 
D711-D5. 

12. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. TISCH: a comprehensive 
web resource enabling interactive single-cell transcriptome visualization of 
tumor microenvironment. Nucleic Acids Res. 2021; 49: D1420-D30. 

13. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et 
al. Pan-cancer Immunogenomic Analyses Reveal 
Genotype-Immunophenotype Relationships and Predictors of Response to 
Checkpoint Blockade. Cell Rep. 2017; 18: 248-62. 

14. Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang H, et al. ImmuCellAI: A 
Unique Method for Comprehensive T-Cell Subsets Abundance Prediction and 
its Application in Cancer Immunotherapy. Adv Sci (Weinh). 2020; 7: 1902880. 

15. Braun DA, Hou Y, Bakouny Z, Ficial M, Sant' Angelo M, Forman J, et al. 
Interplay of somatic alterations and immune infiltration modulates response 
to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat Med. 2020; 
26: 909-18. 

16. Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, et al. Tumor Microenvironment 
Characterization in Gastric Cancer Identifies Prognostic and 
Immunotherapeutically Relevant Gene Signatures. Cancer Immunol Res. 2019; 
7: 737-50. 

17. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, et al. 
Cancer-associated adipocytes exhibit an activated phenotype and contribute 
to breast cancer invasion. Cancer Res. 2011; 71: 2455-65. 

18. Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, et al. 
Interleukin-10 signaling in regulatory T cells is required for suppression of 
Th17 cell-mediated inflammation. Immunity. 2011; 34: 566-78. 

19. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and 
function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003; 4: 330-6. 

20. Sun K, Tang S, Hou Y, Xi L, Chen Y, Yin J, et al. Oxidized ATM-mediated 
glycolysis enhancement in breast cancer-associated fibroblasts contributes to 
tumor invasion through lactate as metabolic coupling. EBioMedicine. 2019; 41: 
370-83. 

21. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. 
Science. 2015; 348: 69-74. 

22. Kim ES, Kim JE, Patel MA, Mangraviti A, Ruzevick J, Lim M. Immune 
Checkpoint Modulators: An Emerging Antiglioma Armamentarium. J 
Immunol Res. 2016; 2016: 4683607. 

23. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor 
microenvironment in tumorigenesis. J Cancer. 2017; 8: 761-73. 

24. Diaz-Montero CM, Rini BI, Finke JH. The immunology of renal cell carcinoma. 
Nat Rev Nephrol. 2020; 16: 721-35. 

25. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune 
contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017; 14: 
717-34. 

26. Zhou L, Zhang L, Chen S, Sun D, Qu J. Elevated Neddylation Pathway 
Promotes Th2 Cells Infiltration by Transactivating STAT5A in Hepatocellular 
Carcinoma. Front Oncol. 2021; 11: 709170. 

27. Cong T, Luo Y, Liu Y, Yang C, Yang H, Li Y, et al. Cuproptosis-related 
immune checkpoint gene signature: Prediction of prognosis and immune 
response for hepatocellular carcinoma. Front Genet. 2022; 13: 1000997. 

28. Song Q, Zhu X, Jin L, Chen M, Zhang W, Su J. SMGR: a joint statistical method 
for integrative analysis of single-cell multi-omics data. NAR Genom 
Bioinform. 2022; 4: lqac056. 


