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Abstract 

Aim: To identify the pyroptosis-related long non-coding RNAs (lncRNAs) in ovarian cancer and 
construct a prognostic signature based on them.  
Methods: Expression data from TCGA was used to explore differentially expressed pyroptosis-related 
lncRNAs in ovarian cancer. A risk signature was established by LASSO and cox regression analysis and 
then validated. Databases such as ESTIMATE, CIBERSORT, TIMER, XCELL were used to identify the 
relation between this signature and the immune microenvironment of ovarian cancer. Gene Set 
Enrichment Analysis was introduced to identify the pathways and functions that the signature may 
participate in. Based on miRcode and starBase databases, microRNAs related to the lncRNAs in our 
signature and the positively co-expressed pyroptosis- related genes were screened and a competing 
endogenous RNA (ceRNA) network was then constructed. Quantitative reverse transcription PCR was 
conducted to validate the expression levels of two lncRNAs in this ceRNA network. 
Results: A 13 pyroptosis-related lncRNA prognostic signature (MYCNOS, AL161772.1, USP30-AS1, 
ZNF32-AS2, AC068733.3, AC012236.1, AC015802.5, KIAA1671-AS1, AC013403.2, MIR223HG, 
KRT7-AS, PTPRD-AS1 and LINC01094) was constructed. Patients in high-risk group had a significantly 
worse prognosis than that of low-risk (P<0.0001). Immune infiltration analysis found that patients 
identified as high-risk had a higher infiltration of macrophages and tumor-associated fibroblasts. Further 
pathway analysis revealed that the signature may be involved in epithelial mesenchymal transition, 
extracellular matrix receptor interaction, and focal adhesion. Finally, a competitive endogenous inhibition 
relationship was discovered between LINC01094, KRT7-AS, MYCNOS, ZNF32-AS2, AC012236.1 and 
pyroptosis- related genes such as IRF1, NOD1, GSDMC, NLRP1, PLCG1, GSDME and GZMB, in which 
LINC01094 and KRT7-AS were found to be overexpressed in three ovarian cancer cell lines. 
Conclusion: We constructed a pyroptosis-related lncRNA signature and correlate it to the immune 
microenvironment. A ceRNA regulatory network related to pyroptosis was also constructed, which 
provides novel insights useful for the study of pyroptosis in ovarian cancer. 
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1. Introduction 
Ovarian cancer is the deadliest gynecological 

malignancy [1], and approximately 230,000 people are 
diagnosed every year [2]. Owing to the lack of 
observable symptoms in early-stage patients, 

approximately 75% of patients are at an advanced 
stage when diagnosed [3], which also leads to a 5-year 
survival rate of only 46% [4]. With the progress of 
research, the management of ovarian cancer at present 
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has transformed into a more precise and 
individualized application of cytoreductive surgery, 
platinum-based chemotherapy, and a combination of 
targeted therapies [5]. The development of novel 
tumor prognostic and therapeutic biomarkers will 
help promote the continued development of precision 
medicine, which is the current trend in cancer 
research. 

Pyroptosis, also known as inflammatory 
necrosis, is a type of programmed cell death. It is a 
special way of death induced in macrophages, 
neutrophils, and other phagocytes when the body is 
fighting against a pathogenic invasion [6], which is 
mainly divided into classical caspase-1 dependent 
pathways and non-classical caspase-4, 5, and 11 
dependent pathways. Activated Caspase-1 or 
Caspase-4, 5, 11 can split Gasdermin D (GSDMD) into 
N- and C-terminals, where the N terminal 
(GSDMD-N) forms a transmembrane pore, on the one 
hand, allowing water molecules outside the cell to 
flow in, resulting in cell rupture. On the other hand, 
inflammatory factors such as IL-1β and IL-18 in cells 
are released, leading to a strong inflammatory 
response [6]. However, in recent years, many 
researchers have found that this special programmed 
cell death can occur not only in immune cells, but can 
also be induced in a variety of cancer cells under the 
action of many chemotherapy drugs or molecules in a 
GSDMD [7] or GSDME [8-12], GSDMC [13] and 
GSDMB [14, 15] mediated manner. This shows great 
potential for inducing pyroptosis in tumor cells as a 
therapeutic method. The relationship between 
pyroptosis and cancer is more complicated. On the 
one hand, as a method of inducing cell death, 
pyroptosis of tumor cells can inhibit the occurrence 
and development of cancer. On the other, as a way of 
cell inflammatory death, pyroptosis can have a 
non-negligible impact on the tumor immune 
microenvironment, which in turn affects the 
occurrence and development of tumors. However, the 
impact of pyroptosis on the tumor immune 
microenvironment remains inconclusive. Even if the 
same type of cell undergoes pyroptosis, its anti-tumor 
or tumor-promoting effect depends on the 
relationship between cells undergoing pyroptosis, 
inflammasomes and anti-tumor immunity [6]. Some 
studies suggest that pyroptosis can activate the tumor 
microenvironment to an immunostimulatory state, 
lead to tumor regression in a cytotoxic lymphocyte- 
dependent manner, and play an important role in 
anticancer immunity [16, 17]. In addition, pyroptosis 
has also been found to act synergistically with 
immune checkpoint inhibitors to elicit protective 
immune responses [17]. In contrast, studies have 
shown that chronic induction of pyroptosis may lead 

to chronic inflammation, resulting in a tumor- 
promoting microenvironment [18, 19]. Elucidating the 
relevant mechanisms of pyroptosis in tumors will 
help to develop new anti-tumor therapies. 

Long non-coding RNA (lncRNA) is a kind of 
non-coding transcript with more than 200 nucleotides. 
Although lncRNAs cannot be directly translated into 
proteins, they can affect gene expression by affecting 
DNA replication, transcriptional regulation, and 
post-transcriptional regulation, thus play an 
unignorable regulatory role in various life activities of 
cells [20]. Previous studies have shown that in ovarian 
cancer, a variety of lncRNAs are dysregulated, which 
can play a role in cancer cell invasion, metastasis, and 
chemotherapy resistance, and may be used as cancer 
biomarkers [21]. However, the current research on the 
role of lncRNA in tumor cell pyrolysis is still at an 
early stage, and the research on lncRNA in ovarian 
cancer cell pyroptosis is particularly limited. 

Therefore, we use the ovarian cancer data in 
TCGA to comprehensively analyze the lncRNAs 
related to pyroptosis in this research. After prognostic 
analysis, emerging prognostic markers and potential 
therapeutic targets related to pyroptosis were 
obtained, and a prognostic signature with clinical 
application value was constructed. In addition, we 
also explored the potential pathways of pyroptosis- 
related lncRNAs in ovarian cancer and the ceRNA 
network that interacts with them, providing a basis 
for elucidating the molecular mechanism of 
pyroptosis in ovarian cancer. In addition, real time 
quantitative PCR (rt-qPCR) was applied to verify the 
expression levels of two lncRNAs between three 
ovarian cancer cell lines and one normal ovarian cell 
lines. Figure 1 summarizes this process. 

2. Materials and methods 
2.1 Data collection 

We downloaded the transcriptome expression 
data (RNA-seq, FPKM) of 427 patients with ovarian 
cancer from The Cancer Genome Atlas database 
(TCGA, https://portal.gdc.cancer.gov). Among them, 
379 samples had complete Clinical information. We 
have obtained the gene expression data (RNAseq- 
TOIL RSEM expected counts) of 88 normal ovarian 
tissues in the Genotype-Tissue Expression (GTEX) 
database from UCSC Xena website (https:// 
xenabrowser.net). The "normalizeBetweenArrays" 
package of R was used to normalize the data from 
TCGA and GTEX, and then merge the data for 
subsequent difference analysis. The RNAseq data 
included both mRNA and lncRNA transcriptome data 
and the Ensembl human genome browser 
GRCh38.p13 (http://asia.ensembl.org/index.html) 
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was introduced to distinguish them. 

2.2 Identification of dysregulated 
pyroptosis-related genes and lncRNAs 
between ovarian cancer and normal ovarian 
tissue 

Fifty-two pyroptosis-related genes (PRGs) were 
obtained from existing studies [22-25] (Supple-
mentary Table 1). We analyzed the expression 
correlation between lncRNA and pyroptosis genes 
based on the TCGA ovarian cancer transcriptome 
data. Taking the absolute value of Pearson's correla-
tion coefficient≥0.30 and P-value<0.01 as the 
thresholds, we identified 1122 lncRNAs (Supplemen-
tary Table 2) that had significant expression 
correlation with pyroptosis genes. Using the "limma" 
R package, we obtained pyroptosis related genes and 

lncRNAs with significant expression differences 
between malignant and normal ovarian tissues 
according to a threshold of false discovery rate 
(FDR)<0.05 and |log2FoldChange|≥1. 

2.3 Functional enrichment analysis of the 
dysregulated PRGs 

An R package named "clusterProfiler" was 
applied to conduct Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis on 29 PRGs. The enrichment 
results with P-value<0.05 and q-value<0.05 were 
considered to be statistically significant and 
visualized with the "ggplot" and "GOplot" R package 
packages. 

 
 

 
Figure 1. The flowchart of this research.              
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2.4 Development and verification of a 
pyroptosis-related lncRNA risk signature 

2.4.1 Construction and verification of a 
pyroptosis-related lncRNA risk signature in the 
training and testing groups 

First, the univariate Cox regression analysis was 
performed to identify pyroptosis-related lncRNAs 
that are significantly associated with the overall 
survival of ovarian cancer patients (P<0.05). Next, we 
grouped the ovarian cancer samples with complete 
clinical information in the TCGA into two groups. 
After deleting five duplicate samples of ovarian 
cancer patients, we separated the remaining 374 
samples into a training group (n= 225) and a testing 
group (n=149) at a ratio of 6:4. In the training group, 
we used the "glmnet" R package to conduct LASSO 
analysis on 34 prognostic-related lncRNAs, and 
further screened and removed them based on the best 
penalty factor (λ). Finally, through stepwise 
multivariate Cox regression analysis, we conducted a 
final screening of these lncRNAs and established a 
risk signature consisting of 13 LncRNAs. The risk 
score for each patient was assessed according to the 
following calculation formula: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝛽𝛽𝑅𝑅
𝑛𝑛

𝑖𝑖=1

× 𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅 

In the above formula, n indicates the number of 
lncRNAs in the signature, β indicates the coefficient of 
each lncRNA, and EXP indicates the detected 
expression level of each lncRNA. Patients in the 
training and testing cohorts were divided into high- 
and low-risk groups based on the median risk score. 
The overall survival rates of the high- and low-risk 
groups was compared by log-rank test of Kaplan- 
Meier analysis. The value of risk scores for predicting 
1-, 3-, 5-, and 10-year survival in ovarian cancer 
patients was analyzed using time-dependent ROC 
curves by the "survivalROC" package. 

2.4.2 Prognostic value analysis of the signature 
To assess whether risk score can be used as an 

independent risk factor for predicting prognosis in 
patients with ovarian cancer, we performed 
univariate and multivariate cox regression analyses 
using “Survival” and “SurvMiner” R packages for 
risk score, age, FIGO stage, grade of differentiation, 
tumor residue, and race in the training and testing 
groups. Using the "survivalROC" package, a 
time-dependent ROC curve was used to compare the 
predictive value of risk score against patient age, 
FIGO stage, pathological grade, and tumor residual 
for 1 -, 3 -, 5 -, and 10-year survival. 

To better apply the risk score to the clinic, we 

used the "survival" and "regplot" packages to draw a 
nomogram in the overall cohort based on risk score, 
age, FIGO stage, differentiation grade, and tumor 
residual status. The calibration curve was used to 
assess the agreement between the predicted overall 
survival and the actual one. Using the "rms" and 
"rmda" packages, we also conducted decision curve 
analysis (DCA) to compare the effectiveness of 
nomogram and risk score and other individual 
clinicopathological indicators in predicting patient 
prognosis. 

2.5 Analysis of the immune landscape 
Using the "ESTIMATE" R package, we calculated 

the immune score and stromal score of each sample in 
TCGA-OV based on the expression profile data, and 
the sum of the two is the ESTIMATE total score. 
Finally, the tumor purity of each sample was assessed 
based on the above scores, that is, the higher the 
immune and stromal score, the lower the tumor 
purity [26]. From the TIMER2.0 (http://timer.comp- 
genomics.org) website, we downloaded the infiltra-
tion scores of various immune cells in the samples 
from TCGA database calculated by seven platforms 
including TIMER, CIBERSORT, Cibersort-ABS, 
QUANTISEQ, MCPCOUNTER, XCELL and EPIC. In 
addition, we used single-sample gene set enrichment 
analysis (ssGSEA) to assess the different immune 
function scores of each sample in TCGA-OV [27]. 

2.6 GSEA for the high- and low-risk groups 
We obtained Hallmark gene sets 

(hav7.4.symbols.gmt) and KEGG gene sets 
(c2.cp.kegg.v7.4.symbols.gmt) from the Molecular 
Signatures Database (MSigDB, https://www.gsea- 
msigdb.org/gsea/msigdb/index.jsp). Using GSEA 
software (version 4.0.3), the expression profiles of the 
high and low risk groups were compared with the 
two gene sets respectively, and the related 
HALLMARK and KEGG pathways related to the 
prognosis signature were analyzed. The number of 
random sample permutations was set to 1000. Using 
P<0.05 and FDR-q<0.25 as criteria, the pathways 
significantly associated with the high-risk group and 
the low-risk group were screened out, respectively. 

2.7 Development of a ceRNA regulatory 
network for the lncRNAs in the signature 

We first used Pearson’s r≥0.2, P<0.05 as the 
threshold to identify PRGs that were significantly 
positively related to each lncRNA in the signature. In 
miRcode (http://www.mircode.org/) and starBase 
(version 2.0, https://starbase.sysu.edu.cn/) websites, 
miRNAs that interacted with lncRNA and PRGs were 
screened and compared to identify miRNAs that 
interacted with both lncRNA and PRGs. Finally, 
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Cytoscape (Version 3.7.2) was introduced to visualize 
the ceRNA network. Among them, miRcode is a 
comprehensive website for deducing mircoRNA 
target sites in the complete GENCODE annotated 
transcriptome. It is mainly used to predict the 
interaction between lncRNA and microRNA, which 
contains 10419 lncRNAs [28]. Starbase provides the 
most comprehensive miRNA-mRNA and 
miRNA-lncRNA interaction network supported by 
CLIP-Seq experiments, including about 10,000 pairs of 
ceRNA [29]. 

2.8 Cell culture and rt-qPCR 
The ovarian cancer cell line (OVCAR3, SKOV3, 

and ES2) and normal ovarian cell line HOSEpiC were 
obtained from Shanghai Institute of Biochemistry and 
Cell Biology, Chinese Academy of Sciences (Shanghai, 
China). 10% fetal bovine serum (Biological Industries, 
Beit-Haemek, Israel) and 90% medium were prepared 
into complete medium for cell culture, among which 
OVCA3 and SKOV3 cell lines were cultured in RPMI 
1640 medium (Biological Industries, Beit-Haemek, 
Israel), while ES2 and HOSEPIC cell lines were 
cultured in McCoy's 5A medium (Biological 
Industries, Beit-Haemek, Israel). The cells were 
incubated at 37 °C, 5% CO2 with condensate 
humidity. When the cells grew to 80-90% of the 6 cm 
dish, they were removed from the incubator and 
rinsed with PBS solution 1-2 times. Total RNA was 
extracted by TRIzol (Invitrogen, Carlsbad, CA, USA) 
and its concentration was detected by NanoDrop Lite 
spectrophotometer (Termo Scientifc). Total RNA was 
reverse transcribed using the PrimeScript™ RT 
Reagent Kit (TAKARA, RR047A, Shiga, Japan) for 
synthesis of cDNA. SYBR Green™ Premix Ex Taq™ II 
(TaKaRa, RR820A, Shiga, Japan) was used to amplify 
the samples on a real-time fluorescent quantitative 
PCR machine (Life Technologies, ABI7500fast). Each 
reaction well was provided with three different wells. 
The melting curve was used to determine the 
specificity of the primer. Using GAPDH as an internal 
reference, the relative expression level was calculated 
using the 2−△△Ct method. The primers of lncRNA 
and GAPDH are as follows: KRT7-AS-Forward: 
5’-TCCAACGCCTATGTTCCAGTTC-3’, KRT7-AS- 
Reverse: 5’-ACATTGTGCCACGGACATCTTG-3’; 
LINC01094-Forward: 5’-AATCCCAGTTGCTCTTCC 
AGTCATC-3’, LINC01094-Reverse: 5’-CAGTGTTGT 
CCTCAGTTGCTCTCC-3’; GAPDH-Forward: 5’-GCA 
CCGTCAAGGCTGAGAAC-3’, GAPDH-Reverse: 
5’-TGGTGAAGACGCCAGTGGA-3’. 

2.9 Statistical analysis 
All statistical analysis and visualization of 

results were conducted using R software (version 

3.6.1), and p<0.05 or 0.01 was defined as statistically 
significant. Chi-square test was used to analyze count 
data, and Wilcox test was used to analyze 
measurement data. The Kaplan-Meier curve was used 
for survival analysis, and the log-rank method was 
applied to compare survival between the two groups. 
Cox regression model was used for univariate and 
multivariate analysis. 

3. Results 
3.1 Screening and differential analysis of 
lncRNA related to pyroptosis in ovarian cancer 

Using the transcriptome database of TCGA-OV, 
we identified 1122 lncRNAs that were significantly 
related to the expression of 52 PRGs with the absolute 
value of R≥0.30 and P<0.05 as the threshold. The 
correlation between these lncRNAs and PRGs is 
shown in Supplementary Table 2. Next, we performed 
differential expression analysis of these lncRNAs, and 
with the absolute value of logFC ≥ 1, FDR <0.05 as the 
threshold, we further identified 712 lncRNAs 
(Supplementary Table 3) that are significantly 
different expressed between normal and malignant 
ovarian tissues. Figure 2A shows the differential 
expression of these pyroptosis-related lncRNAs and 
annotates lncRNAs with an absolute value of logFC ≥ 
5.0. 

3.2 Differential analysis and pathway 
enrichment analysis of PRGs in ovarian cancer 

Next, we analyzed the differential expression of 
52 PRGs, using absolute value of logFC ≥ 1, FDR <0.05 
as the threshold, and found 29 genes that are 
dysregulated between ovarian cancer and normal 
ovarian tissues. These include nine genes with 
significantly lower expression in ovarian cancer and 
20 genes with higher expression in ovarian cancer 
(Supplementary Table 4). Figure 2B shows the 
differential expression of these PRGs and annotates 
genes with an absolute value of logFC ≥ 2.5. 

We performed KEGG and GO enrichment 
analysis on 29 differentially expressed PRGs in 
ovarian cancer, with q-value≤0.05 as the threshold, 
and found that these genes were mainly enriched in 
apoptosis, NOD-like receptor signaling pathway, 
platinum drug resistance, and p53 signaling pathway. 
(Figure 2C). The GO enrichment results show that 
these genes are mainly enriched in the regulation of 
endopeptidase activity, pyroptosis and other 
biological processes (Figure 2D), and are mainly 
involved in the formation of cellular components such 
as inflammasome complex, cytosolic part, and 
immunological synapse (Figure 2E), and participate in 
cysteine-type endopeptidase activity involved in 
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apoptotic process, cytokine receptor binding, protease 
binding and many other molecular functions (Figure 
2F). 

3.3 Development and verification of a 
pyroptosis-related lncRNA signature in 
ovarian cancer 

In the overall sample of TCGA-OV, we selected 
34 prognosis-related lncRNAs from 712 dysregulated 

pyroptosis-related lncRNAs by univariate-cox 
regression analysis (Supplementary Figure 1). 
Subsequently, we divided the overall sample of 
TCGA-OV into a training and a verification group 
(the number of samples were 225 and 149, 
respectively) according to a 6:4 ratio, which were then 
used for the establishment and verification of the 
signature, respectively. 

 

 
Figure 2. Screening and functional enrichment analysis of pyroptosis-related genes and lncRNAs with dysregulated expression. (A) The volcano graph of 
differential expression of pyroptosis-related lncRNAs between malignant and normal ovarian tissues, where the green dots represent the lnRNAs whose expression is 
significantly reduced in ovarian cancer (logFC≤ -1.0, FDR<0.05), and the red dots represent the lnRNAs that is significantly overexpressed in ovarian cancer (logFC≥1.0, 
FDR<0.05). In the figure, lnRNAs with │logFC│ ≥5.0 are marked. (B) The volcano graph of differential expression of PRGs between malignant and normal ovarian tissues, where 
the green and red dots represent the genes who are significantly down- or up- regulated in ovarian cancer (|logFC|≥ 1.0, FDR<0.05), respectively. In the figure, genes with 
│logFC│ ≥2.5 are marked. (C) The bubble chart of the KEGG enrichment analysis of 29 differentially expressed PRGs, where P value and the number of genes participate in the 
pathway is represented by the color and size of the bubbles, respectively. (D-F) Chord plot of biological process(D), cellular component(E), and molecular function(F) 
enrichment analysis results in GO enrichment analysis. Arranged according to the P value from small to large, the top 20 enrichment results and their related genes are displayed 
(of which there are only 9 meaningful results for molecular function). The genes are arranged according to their differentially expressed logFC value. lncRNAs: Long non-coding 
RNAs, PRGs: pyroptosis-related genes, FC: Fold Change, FDR: false discovery rate, KEGG: Kyoto Encyclopedia of Genes and Genomes, GO: Gene Ontology. 
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3.3.1 The development of the pyroptosis-related 
lncRNA signature 

Among the 225 samples in the training group, 
we conducted LASSO regression analysis on 34 
prognostic-related lncRNAs, and selected 22 lncRNAs 
to be included in the subsequent stepwise 
multivariate cox regression analysis (Figure 3A, B). 
Finally, 13 lncRNAs were screened for the 
development of the signature. Table 1 shows the 
results of multivariate analysis, in which MYCNOS, 
AL161772.1, USP30-AS1, ZNF32-AS2, AC068733.3, 
AC012236.1, AC015802.5, KIAA1671-AS1 and 
AC013403.2 are the prognostic protective lncRNAs in 
ovarian cancer lncRNA (HR<1), while MIR223HG, 
KRT7-AS, PTPRD-AS1 and LINC01094 are the 
prognostic risk lncRNAs in ovarian cancer (HR>1). 
Using the expression of each lncRNA in the signature, 
multiplying by their respective coefficients, and 
finally adding up to calculate the risk score of each 
sample, that is, Risk score = (-0.142721*EXPMYCNOS) + 
(-0.176696*EXPAL161772.1) + (-0.1364156*EXPUSP30-AS1) + 
(0.495127*EXPMIR223HG) + (-0.400991*EXPANF32-AS2) + 
(-0.536123*EXPAC068733.3) + (0.052420*EXPKRT7-AS) + 
(-0.187234*EXPAC012236.1) + (0.369327*EXPPTPRD-AS1) + 
(-0.492214*EXPAC015802.5) + (0.099398*EXPLINC01094) + 
(-0.152476*EXPKIAA1671-AS1) + (-0.491793*EXPAC013403.2). 

 

Table 1. Results of the 13 key LncRNAs in the stepwise 
multivariate Cox regression analysis 

LncRNAs coefficient HR HR.95L HR.95H P-value 
MYCNOS -0.142721 0.866996 0.753592 0.997465 0.045993 
AL161772.1 -0.176696 0.838034 0.659009 1.065692 0.149566 
USP30-AS1 -0.1364156 0.87248 0.785421 0.969188 0.010975 
MIR223HG 0.495127 1.640707 1.09449 2.459518 0.016526 
ZNF32-AS2 -0.400991 0.669656 0.397444 1.128307 0.131952 
AC068733.3 -0.536123 0.585012 0.283245 1.20828 0.147418 
KRT7-AS 0.05242 1.053818 1.012343 1.096993 0.010505 
AC012236.1 -0.187234 0.829249 0.686395 1.001835 0.052263 
PTPRD-AS1 0.369327 1.446761 1.08157 1.935259 0.012837 
AC015802.5 -0.492214 0.611271 0.372932 1.001934 0.050902 
LINC01094 0.099398 1.104506 0.990417 1.231737 0.07396 
KIAA1671-AS1 -0.152476 0.85858 0.7537 0.978053 0.021802 
AC013403.2 -0.491793 0.611529 0.35251 1.060869 0.080164 

 
According to the above formula, we calculated 

the risk score of each patient in the training group and 
then defined them as high- and low-risk patients 
based on the median value (Figure 3C, top). There 
were more deaths in high-risk patients than in 
low-risk patients (Figure 3C, middle). Among the 13 
LncRNAs in the signature, prognostic risk lncRNAs, 
MIR223HG, KRT7-AS, PTPRD-AS1 and LINC01094 
were expressed higher in the high-risk patients than 
in the low-risk patients (Figure 3C, below). Prognostic 
protective lncRNAs (MYCNOS, AL161772.1, 
USP30-AS1, ZNF32-AS2, AC068733.3, AC012236.1, 
AC015802.5, KIAA1671-AS1 and AC013403.2) were 
on the contrary, expressed relatively highly in the 

low-risk patients (Figure 3C, below). 

3.3.2 Assessment of the efficacy of signature for 
predicting patient survival 

To assess the efficacy of the signature in 
predicting ovarian cancer survival, Kaplan-Meier 
survival analysis was conducted in both high-risk and 
low-risk patients, which showed significantly poorer 
survival in the high-risk patients (P <0.001, Figure 
3D). In addition, the result of the time-dependent 
ROC curve show that the signature has a good 
predictive efficacy on the patients' 1-year, 3-year, 
5-year and 10-year survival rates (Figure 2E, the area 
under the curve (AUC) is 0.688, 0.703, 0.742 and 0.804, 
respectively). 

3.3.3 Verification of the prognostic signature in the 
testing group 

In the validation cohort, we also separated 
patients into high- and low-risk groups according to 
risk scores (Figure 3F, Up). As shown in the middle 
and bottom part of Figure 3F, the number of patients 
whose survival outcome is death is more in the 
high-risk group than in the lower-risk group, and four 
prognostic risk genes have higher expression in the 
high-risk group, while the prognostic protection 
genes are the opposite. Similarly, the Kaplan-Meier 
curve of the validation cohort indicated that the 
prognosis of high-risk patients was significantly 
poorer than that of the low-risk patients (p<0.001, 
Figure 3G). As shown in Figure 3H, the risk signature 
can also accurately predict the survival rate in the 
validation cohort, whose 1-year, 3-year, 5-year, and 
10-year area under the ROC curve are 0.652, 0.696, 
0.755, and 0.743, respectively. 

3.3.4 Assessment of the clinical application value of 
prognostic signature 

Cox regression analysis was conducted on risk 
scores together with clinical indicators including age, 
FIGO stage, differentiation, tumor residual disease, 
and race in the training and testing group, 
respectively. The results of univariate cox regression 
analysis indicated that the risk score was significantly 
correlated with the prognosis of patients with ovarian 
cancer (Figure 4A, training cohort: P<0.001, HR=1.718; 
testing cohort: P<0.001, HR=1.300). Furthermore, the 
multivariate cox regression analysis indicated that the 
risk score may be an independent risk factor for 
ovarian cancer patients (Figure 4A, training cohort: 
P<0.001, HR=1.676; testing cohort: P<0.001, 
HR=1.285). Then, we drew time-dependent ROC 
curves in both the training group and the validation 
group to compare the AUC value of risk score and 
other clinical factors including age, FIGO stage, 
differentiation, tumor residual, and race in the time 
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range of 1 to 10 years. The results show that, whether 
in the training or validation group, the risk score has 
better predictive power than other clinicopathological 
indicators (Figure 4B). 

Finally, we combined the risk score and clinical 
indicators of age, FIGO stage, differentiation, and 
tumor residual to construct a nomogram to predict 
the survival of ovarian cancer patients in the overall 
cohort. As shown in Figure 4C, according to this 
nomogram, individual scores for age, FIGO stage, 
differentiation, tumor residual, and risk can be 
calculated according to the different conditions of 
each patient. Finally, the score obtained from the sum 
of the scores of each component can be used to predict 
the patient's 1-year, 3-year, and 5-year survival 
probability. Decision Curve Analysis (DCA) was 
carried out to evaluate the advantages of the 
nomogram in predicting the prognostic risk of 
ovarian cancer patients. As shown in Figure 4D, the 
effectiveness of nomogram was significantly better 

than risk score and other clinicopathological 
indicators. The efficacy of risk score alone was 
significantly higher than that of traditional 
clinicopathological indicators including age, FIGO 
stage, differentiation, and tumor residual. Finally, the 
results of the calibration curve showed that the 1 -, 3 -, 
5 -, and 10-year survival rates estimated by the 
nomogram were close to the actual one, further 
indicating that this nomogram could predict the 
prognosis of ovarian cancer patients accurately 
(Figure 4E). 

3.4 Robustness analysis of prognostic signature 
and its association with clinicopathological 
features 

To assess the robustness of the prognostic 
signature in clinical application, we first separated 
patients into different groups based on the clinical 
features including age (≤60, >60), FIGO Stage (Stage 
II, III, IV), Grade (Grade 1/2, 3/4), Race (Asian, White, 

 

 
Figure 3. The development and verification of a pyroptosis-related signature. (A) The distribution of lambda values in LASSO analysis. (B) Coefficient distribution of 
LASSO regression analysis of 34 prognosis-related lncRNAs. (C) Plot of risk score (top), survival status (middle), and RNA expression heatmap (below) of patients in the training 
cohort. In the risk score graph, the risk scores of the low- and high- risk group are represented by the green and red curve, respectively. The green and red dots in the survival 
state diagram indicate the samples whose survival state is alive and dead, respectively. In the RNA expression heatmap, red and green indicates the up and down regulation of the 
lncRNA in the sample, respectively. (D) Kaplan-Meier survival analysis of high- and low-risk patients in the training cohort. (E) ROC curve for assessing the efficacy of our 
signature in predicting patients' 1-year, 3-year, 5-year, and 10-year survival rates in the training cohort. (F) Plot of risk score (top), survival status (middle), and RNA expression 
heatmap (below) of patients in the testing cohort. (G) Kaplan-Meier survival analysis of high- and low-risk patients in the testing cohort. (H) ROC curve for assessing the efficacy 
of our signature in predicting patients' 1-year, 3-year, 5-year, and 10-year survival rates in the testing cohort. LASSO: The Least Absolute Shrinkage and Selectionator operator, 
lncRNAs: Long non-coding RNAs, ROC: receiver operating characteristic curve. 
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Other/Unknown) and Residual tumor (No residual, 
1-10 mm, 11-20 mm, >20 mm) and then performed 
kaplan-Meier survival analysis in each group based 
on risk scores. In addition to Stage I (P = 0.384, n = 23), 
Other/Unknown Race (P = 0.477, n = 39), tumor 
residual 11-10 mm (P = 0.064, n = 25) these three 
groups, the pyroptosis related signature can 
distinguish the overall survival of patients according 
to the risk scores (Figure 5A). Therefore, we believe 
that this prognostic signature can differentiate the 
prognosis of different patients independent of 
different clinical characteristics. 

Then, heatmap was applied based on the risk 
score grouping and clinicopathological features of the 
patients. As shown in Figure 5B, there were 

significant differences in different size of residual 
tumor disease between the high and low risk groups, 
whereas no differences were observed between the 
other clinical characteristics (age, FIGO grade, stage, 
and race) that were included in the analysis. Thus, we 
visualized the difference in risk scores between 
patients with different tumor residual disease. The 
results showed that the risk score of patients with 
residual tumor was significantly higher than that of 
patients without residual tumor (Figure 5C, P = 
6.2E-06). Further grouping analysis showed that the 
risk scores of patients with 1-10 mm tumor residual 
and >20 mm tumor residual were significantly higher 
than those without tumor residual (Figure. 5D, P = 
0.00072 and 0.0045 respectively). 

 
 
 

 
Figure 4. The clinical application value of our pyroptosis-related signature. (A) Univariate and multivariate Cox regression analysis of the risk score and other clinical 
factors containing age, FIGO stage, differentiation, tumor residual disease and race in the training and testing cohort. (B) Time-dependent ROC curves to compare the AUC 
values of risk score and other clinical factors including age, FIGO stage, differentiation, and tumor residual disease in time range from 1 year to 10 years in training and testing 
cohort. (C) A nomogram established in the entire cohort by combining risk score and other clinical factors containing age, FIGO stage, differentiation, and tumor residual disease. 
(D) DCA curve comparing the efficacy of nomogram, risk score, age, FIGO stage, differentiation, and residual tumor disease in predicting the survival rate of ovarian cancer 
patients in the entire cohort. (E) Calibration curve used to assess the agreement between nomogram-predicted survival and true survival of patients in the entire cohort. FIGO: 
Federation International of Gynecology and Obstetrics, AUC: Area Under Curve, DCA: Decision Curve Analysis. 
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Figure 5. The robustness analysis of our pyroptosis-related signature and its correlation with clinicopathological indicators of ovarian cancer patients. (A) 
Robustness assessment of our signature. Kaplan-Meier survival analysis for high and low risk patients in the groups of younger than 60, older than 60, Stage II, Stage III, Stage IV, 
Grade 1 and 2, Grade 3 and 4, Asian race, White race, Other races or unknown, without tumor residual diseases or unknown, with a residual disease of 1-10 mm, 11-20 mm, 
and more than 20 mm, respectively. (B) The heat map shows the correlation between the expression profile of the lncRNA in the signature and the clinicopathological 
characteristics of patients. Different clinicopathological parameters and risk groups are displayed in different colors. The expression levels of the 13 lncRNAs are also indicated 
by color code bars, where red and green means up- and down-regulation, respectively. (C) Box plot of the difference in risk scores between patients without tumor residual 
diseases and those with tumor residual diseases. (D) Box plot of the difference in risk scores between patients without tumor residual diseases, with a tumor residual disease of 
1-10 mm, 11-20 mm, and more than 20 mm, respectively. 

 

3.5 Correlation between signature and 
immune-infiltrating microenvironment of 
ovarian cancer patients 

Based on genome-wide expression, we 
calculated Immune Score, Stromal Score, and tumor 
purity for each patient using the "ESTIMATE" R 
package. The sum of Immune Score and Stromal Score 

is ESTIMATE Score, which can be used to 
comprehensively evaluate the infiltration of immune 
cells and stromal cells in the microenvironment of 
tumor samples. As shown in Figure 6A, the risk score 
is significantly positively correlated with Immune 
Score (Pearson's r = 0.24, P = 7.55e-06), Stromal Score 
(Pearson's r = 0.36, P = 1.02e-11) and ESTIMATE Score 
(Pearson's r = 0.33, P = 8.83e-10), that is, patients with 
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higher risk scores have higher immune cells and 
stromal cell infiltration. Correspondingly, high risk 
patient has a lower tumor purity (Figure 6A, 
Pearson’s r = -0.35, P = 7.05e-11). 

Next, we further explored the relation between 
the risk score and the infiltration of different immune 
cells evaluated by seven tools: TIMER, CIBERSORT, 
CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, 
XCELL and EPIC. Figure 6B shows all immune cells 
with significant differences in infiltration between the 
high and low risk groups (P <0.05). Based on the 

analysis of the prognostic information of the patient, 
we found that in ovarian cancer, patients with higher 
infiltration of effector B cells (also known as plasma 
cells) and follicular helper T cells had a better 
prognosis, and correspondingly, high risk patients 
had higher infiltration of effector B cells and follicular 
helper T cells (Figure 6C). In addition, we also found 
that in all seven platforms, the analysis showed that 
the high-risk patients had significantly higher 
macrophage infiltration, especially M2 type 
macrophages (Figure 6B). Further prognostic analysis 

 

 
Figure 6. The involvement of the signature in the immune microenvironment of patients with ovarian cancer. (A) Scatter plot of the correlation between risk 
score and immune score, stromal score, ESTIMATE score as well as tumor purity. (B) Heatmap showing the differences in the infiltration of different immune cells between the 
high- and low-risk patients in seven calculation tools. The risk score, risk grouping and different calculation tools are all distinguished by different colors. Samples with high levels 
of immune cell infiltration are shown in red and vice versa in blue. (C) The difference in the infiltration of effector B cells, follicular helper T cells, macrophages and 
tumor-associated fibroblasts between the high and low risk groups, and the Kaplan-Meier curve comparing the effects of these immune cell infiltrations on the survival of ovarian 
cancer patients. (D) Differences in immune functions between high- and low-risk patients. (E) Differences in expression of immune checkpoints between high- and low-risk 
patients. 
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results also indicated that patients with higher 
macrophage/M2 macrophage infiltration have a 
significantly poorer prognosis (Figure 6C). Finally, we 
also found that a higher risk score was significantly 
correlated with a richer tumor-associated fibroblast 
infiltration, and its higher infiltration was also 
significantly correlated with a shorter overall survival 
of the patient (Figure 6C). 

Finally, we analyzed whether risk scores were 
associated with some immune-related functions and 
immune checkpoints in patients. ssGSEA was 
introduced to calculate the different immune function 
scores of each sample in TCGA-OV. The results are 
shown in Figure 6D. The higher risk score is 
significantly positively related to immune functions 
such as APC co inhibition, APC co stimulation, CCR, 
check point, cytolytic activity, parainflammation, T 
Cell co-stimulation, and Type II IFN response, while 
lower risk scores are significantly positively 
correlated with MHC class I. Further research on 
immune checkpoints found that the expression of 
some immune checkpoints such as BTLA, CD200, 
BTNL2, and TNFSF15 were significantly higher in the 
low-risk group, while NRP1, LAIR1, CD244, 
CD200R1, CD48, HAVCR2, PDCD1LG2, TNFSF8, 
TNFRSF8, TNFSF4, CD86 and CD44 and other 
immune checkpoints were significantly overex-
pressed in the low-risk group (Figure 6E). 

3.6 GSEA enrichment analysis identifies 
signature-related pathways 

To analyze the downstream pathways that the 
signature may participate in, we used GSEA to 
compare the genetic characteristics of the high- and 
low-risk groups with the various pathways of 
HALLMARK and KEGG. With normalized 
P-value<0.05 and FDR q-value<0.25 as thresholds, we 
screened the pathways related to the two groups, 
respectively. Sorted by Enrichment Score, Figure 7A 
shows the top 10 pathways positively associated with 
the high-risk group and the three pathways 
negatively associated with the low-risk group in the 
HALLMARK enrichment analysis. The results show 
that ovarian cancer in the high-risk group may be 
involved in epithelial-mesenchymal transition, KRAS 
signaling pathway, TNF NFKB signaling pathway, 
and angiogenesis, while the low-risk group is 
negatively associated with E2F and MYC pathways. 
Similarly, KEGG enrichment show that ovarian cancer 
in the high-risk group may be involved in ECM 
receptor interaction, focal adhesion, leukocyte 
trans-endothelial migration, and regulation of actin 
cytoskeleton, while the low-risk group is negatively 
associated with mismatch repair and DNA replication 
(Figure 7B). 

3.7 Construction of ceRNA regulatory 
network of lncRNA in the pyroptosis-related 
prognostic signature 

To further analyze the possible targets of 
lncRNAs in the pyroptosis-related signature and 
related regulatory axes in ovarian cancer, we 
combined the RNASeq transcriptome expression data 
of TCGA-OV with miRcode and starBase databases to 
predict and construct a competing endogenous RNA 
(ceRNA) regulatory network. The ceRNA regulatory 
network has been proven by many studies to play an 
important role in a variety of tumors. The theoretical 
basis is that certain mRNA and lncRNA in the cell 
have the same miRNA response element, and a 
competitive relationship can be formed between the 
two. Since miRNA has a negative regulatory effect on 
the expression of its target genes, the expression of a 
pair of competitive mRNA and lncRNA with the same 
miRNA response element is positively correlated. The 
process of constructing a ceRNA regulatory network 
related to pyroptosis in ovarian cancer is shown in 
Figure 7C. First, among the differentially expressed 
PRGs in ovarian cancer, we screened mRNAs that are 
significantly positively correlated with lncRNA in the 
prognostic signature (R≥0.20, P<0.05). Then use the 
miRcode and starbase database to predict the target 
miRNA, and finally screen out the miRNA that has an 
interaction relationship with both lncRNA and 
mRNA to construct the network. As shown in Figure 
7D, among the 13 lncRNAs in the prognostic 
signature, 5 were found to have the same target 
miRNAs with their positively correlated PRGs, 
namely, LINC01094, KRT7-AS, MYCNOS, ZNF32- 
AS2 and AC012236.1. Through miRNA, these 
lncRNAs are connected with PRGs such as IRF1, 
NOD1, GSDMC, NLRP1, PLCG1, GSDME and GZMB 
to construct a pyroptosis related ceRNA regulatory 
network in ovarian cancer. 

Next, we conducted preliminary rt-qPCR 
verification on two poor prognosis-related lncRNAs 
in this ceRNA network. The results indicated that 
compared with the normal ovarian cell line HOSEPIC, 
the expression of LINC01094 in the three ovarian 
cancer cell lines was significantly upregulated (Figure 
7E, P<0.05). The expression of KRT7-AS only in the 
OVCAR3 cell line was significantly higher than that in 
HOSEPIC (Figure 7F, P<0.05), while the expression in 
ES2 and SKOV3 cell lines was not significantly 
different from HOSEPIC (Figure 7F, P>0.05). Using 
LnCAR database, we found that KRT7-AS was 
significantly overexpressed in ovarian cancer tissues 
compared with normal. 
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Figure 7. Analysis of the mechanism of the signature. (A) GSEA results show the top 10 significant enriched HALLMARK pathways positively correlated with the 
high-risk ovarian cancer patients and 3 significant enriched pathways negatively correlated with the low-risk ovarian cancer patients. (B) GSEA results show the top 10 significant 
enriched KEGG pathways positively correlated with the high-risk ovarian cancer patients and 3 significant enriched pathways negatively correlated with the low-risk ovarian 
cancer patients. (C) The process of constructing ceRNA regulatory network related to pyrolysis in ovarian cancer. (D) The ceRNA regulatory network showing the interactions 
between pyroptosis-related LncRNAs in our signature and PRGs. The red triangle represents lncRNA, the yellow square represents mRNA, and the blue circle represents 
microRNA. (E, F) The mRNA expression levels of LINC01094 and KRT7-AS between normal ovarian cell line HOSEPIC and ovarian cancer cell lines (OVCAR3, ES2 and 
SKOV3) by rt-qPCR. GSEA: Gene set enrichment analysis, KEGG: Kyoto Encyclopedia of Genes and Genomes, ceRNA: competing endogenous RNA, lncRNA: Long non-coding 
RNA. * P<0.05. 

 

4. Discussion 
Pyroptosis was originally found in pathogen- 

infected mouse macrophages and monocytes [30, 31], 
but it was only recently discovered that it can also 
occur in healthy cells and cancer cells. As numerous 
studies have found that it can be induced in tumor 
cells, its potential role in anti-cancer therapy has 

received extensive attention. In ovarian cancer, 
studies have found that Osthole [32], Nobiletin [33], 2‐
(α-naphthoyl) ethyl‐trimethylammonium iodide (α 
-NETA) [7] and lncRNA GAS5 [34] has the effect of 
inducing pyroptosis, while the inhibition of 
miRNA-15a [35] and lncRNA HOTTIP [36] have the 
function of activating the related pathways of 
pyroptosis. However, these current studies are still 
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only the tip of the iceberg. A more comprehensive 
study of the mechanism of pyroptosis in ovarian 
cancer will help to develop novel and effective 
anti-cancer therapies, which is the general trend of 
current research. 

In this work, we identified 29 PRGs with 
dysregulated expression level between ovarian cancer 
and normal ovarian tissues. In the gasdermin family, 
GSDMA (logFC=1.38557, FDR=5.23e-15) and GSDMC 
(LogFC=2.298323, FDR=2.06e-38) was significantly 
overexpressed in ovarian cancer, while the expression 
of GSDMD (logFC=-1.10275, FDR=8.25e-30) and 
GSDME (logFC=-2.29572, FDR=1.54e- 46) was 
significantly lower in ovarian cancer (Supplementary 
Table 3). At present, studies have shown that GSDMD 
[7, 33] and GSDME [32, 33] are the key targets that 
cause pyroptosis in ovarian cancer cells, while 
GSDMA and GSDMC have not been proven to be 
involved in the pyroptosis of ovarian cancer cells, 
which is consistent with our analysis results. Through 
KEGG enrichment analysis of 29 differentially 
expressed PRGs, we found that they were enriched in 
Apoptosis, NOD-like receptor signaling pathway, 
Platinum drug resistance, p53 signaling pathway and 
other pathways, while Biological Process enrichment 
analysis found them mainly involved in regulation of 
endopeptidase activity and pyroptosis. These results 
indicate that the PRGs we screened are indeed 
involved in the role of pyroptosis and are also related 
to tumor-related pathways such as NOD-like receptor 
signaling pathway, p53 signaling pathway, and 
platinum drug resistance. 

Next, we screened the lncRNAs related to 
pyroptosis and performed prognostic analysis on the 
differentially expressed ones. After further screening 
by LASSO and multivariate cox stepwise regression 
analysis, 13 lncRNAs were included in the final 
signature construction, including four ovarian cancer 
prognostic risk lncRNAs (MIR223HG, KRT7-AS, 
PTPRD-AS1 and LINC01094), and 9 prognostic 
protection lncRNAs (MYCNOS, AL161772.1, USP30- 
AS1, ZNF32-AS2, AC068733.3, AC012236.1, 
AC015802.5, KIAA1671-AS1 and AC013403.2). 
MIR223HG is also known as LINC223. Studies have 
found that its expression in acute myeloid leukemia is 
significantly down-regulated and has the function of 
inhibiting cell cycle progression and promoting the 
transformation of acute myeloid leukemia cells into 
monocytes [37]. KRT7-AS is an antisense RNA of the 
protein coding gene KRT7. Previous researches have 
proved that it can promote the progression of 
colorectal cancer [38], breast cancer [39] and gastric 
cancer [40]. LINC01094 has been shown by many 
studies to promote the progression of various cancers 
by interacting with various miRNAs, including 

ovarian cancer [41], breast cancer [42], pancreatic 
cancer [43], renal clear cell tumor [44], glioma, etc. 
[45]. MYCNOS, as an antisense RNA of coding gene 
MYCN, can play a role in the regulation of malignant 
tumors such as ovarian cancer [46], nephroblastoma 
[47], glioblastoma [48] and liver cancer [49] by 
regulating MYCN or other encoding genes. Similarly, 
USP30-AS1 is an antisense RNA of USP30, and its role 
in cancer regulation can depend on USP30 or other 
encoding genes. In acute myeloid leukemia, it can 
inhibit tumor by regulating the expression of USP30 
[50]. Whereas in cervical cancer [51] and glioblastoma 
[52], USP30-AS1 has been shown to be related to 
cancer progression. These lncRNAs have been shown 
to be involved in the pathogenesis of many cancers in 
previous studies, but our research has discovered for 
the first time their potential role in pyroptosis of 
ovarian cancer cells. In addition, the research on other 
lncRNAs so far is very limited. Our study discovered 
for the first time their potential role in cancer, 
especially ovarian cancer related to pyroptosis. 

Tumor microenvironment (TME) is a complex 
environment for the survival and development of 
tumor cells. It is mainly formed of surrounding 
immune cells, inflammatory cells, fibroblasts, stromal 
cells and microvessels, which play a role in assisting 
the occurrence, growth and metastasis of tumor. Our 
analysis found that the risk score of TCGA ovarian 
cancer samples was significantly positively associated 
with immune score and Stromal score, while 
significantly negatively correlated with tumor purity, 
indicating that the prognostic signature was involved 
in the tumor microenvironment of ovarian cancer. As 
a kind of inflammatory cell death, pyroptosis is the 
main mechanism of body defense. Cells will release a 
large amount of IL-18 and IL-1β when pyroptosis 
occurs, so it is essential for bridging innate immunity 
and adaptive immunity [53]. Existing studies have 
shown that both the inflammatory cytokines released 
by pyroptosis and gasdermin family members have a 
regulatory effect on immune cells [54]. However, the 
correlation between pyroptosis and immune 
infiltration in ovarian cancer remains unclear. By 
comprehensive analysis of the results of TIMER, 
CIBERSORT, XCELL and other platforms, we found 
that plasma cells and follicular helper T cells had 
higher infiltration in low-risk ovarian cancer patients, 
while macrophages and tumor-associated fibroblasts 
had higher infiltration in high-risk ovarian cancer 
patients. Prognostic analysis also showed that 
patients with higher plasma cells and follicular helper 
T cells infiltration had significantly better outcomes, 
while patients with higher infiltration of macrophages 
and tumor-associated fibroblasts had poorer 
outcomes. Follicular helper T cells are a type of CD4+T 
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cells, which belong to anti-tumor immune cells [55], 
while the role of B cells in tumor immunity is still 
controversial, but in ovarian cancer, most studies have 
suggested that tumor infiltration of B cells is related to 
the improvement of prognosis of ovarian cancer 
patients [56]. M1-type macrophages have long been 
considered to have good tumor antagonism, while 
M2-type macrophages are considered to be the main 
source of Myeloid-derived suppressor cells, which 
can not only inhibit immune surveillance of tumor 
cells, but also promote angiogenesis and matrix 
remodeling [57]. Cancer-associated fibroblasts (CAFs) 
are an important part of the tumor microenvironment 
of ovarian cancer. It is transformed from resting 
fibroblasts under the interaction of mesenchymal stem 
cells and tumor cells and have the ability to promote 
tumor growth and invasion by secreting a variety of 
cytokines [56]. Combining the above existing studies, 
high-risk patients are correlated with higher 
infiltration of tumor immunosuppressive cells such as 
M2 macrophages and CAFs, while low-risk patients 
are associated with higher infiltration of anti-tumor 
immune cells such as T cells and plasma cells. This 
indicates that lncRNAs in the pyroptosis related 
signature are related to tumor immune escape and has 
potential application value in tumor immunotherapy 
of ovarian cancer. 

In addition, existing studies have shown that 
pyroptosis-related molecules are related to a variety 
of immunomodulatory effects, and the inflammatory 
factors IL1β [58] and IL18 [59] released in the process 
can induce the differentiation of naive T cells and 
promote their proliferation. In addition, another 
inflammatory factor, HMGB1, can promote the 
migration of dendritic cells and induce the secretion 
of tumor necrosis factor by macrophages [60]. GSDMB 
and GSDMC can be activated or upregulated by a 
variety of immune cells, leading to the occurrence of 
tumor cell pyroptosis [61, 62]. The expression of 
GSDMD in cytotoxic T cells is positively correlated 
with its ability to eliminate tumor cells [63]. These 
findings suggest that pyroptosis and its related 
molecules play a significant role in the anti-tumor 
effect of immune cells. Therefore, it is not surprising 
that our study revealed that the pyroptosis related 
signature is associated with a variety of immune 
functions, such as the activation and inhibition of 
antigen-presenting cells (APC), chemokine receptor 
(CCR), immune checkpoints, and activation and 
inhibition of T cells. A previous study found that 
GSDMA expression may increase the sensitivity of 
breast cancer cells against PD-L1 immunotherapy 
[64]. We found that the expression of multiple 
immune checkpoints such as NRP1, LAIR1, HAVCR2, 
TNFRSF8, and CD86 was significantly upregulated in 

the high-risk group. On the one hand, it suggests that 
our pyroptosis-related lncRNAs signature may 
provide a good reference for immune checkpoint 
blocking therapy in patients with ovarian cancer. On 
the other hand, further analysis of the influence of 
these pyroptosis related lncRNAs on immune 
checkpoint suppression therapy is also a promising 
direction. 

The ceRNA hypothesis was first proposed by 
Leonardo Salmena in 2011. It posits that competitive 
endogenous RNA (ceRNA) existing in cells can 
competitively bind to the same miRNAs through the 
same microRNA response elements (MRE), thus 
regulating each other's expression levels [65]. 
Currently, studies on the regulatory mechanism of 
miRNA have been relatively mature. By binding with 
MRE on the transcript of the encoding gene, namely 
mRNA, miRNA leads to degradation of mRNA or 
inhibits its translation, thus negatively regulating 
gene expression levels. According to Leonardo 
Salmena's hypothesis, some other RNA molecules in 
cells, such as lncRNA, also have MRE, and can 
indirectly positively regulate the expression levels of 
the mRNA with the same MRE by competitively 
binding to their target miRNA. According to this 
hypothesis, we used the two microRNA target 
databases of miRcode and starbase, as well as the 
mRNA and lncRNA expression data in TCGA-OV, to 
construct a miRNA-centered ceRNA regulatory 
network. Thus, we discovered many unproven 
pyroptosis related regulatory axes in ovarian cancer, 
such as KRT7-AS—has-miR-205—GSDMC, 
LINC01094—has-miR-330-3p—IRF1, ZNF32-AS2— 
has-miR-214—GSDME, and MYCNOS—has-miR- 
150—NLRP1. Our rt-qPCR experimental results 
preliminarily prove that the expression of LNC01094 
and KRT7-AS in ovarian cancer cell lines was higher 
than that in normal ovarian cell lines. These results 
provide an important basis for further studies on the 
mechanism of lncRNA in pyroptosis of ovarian cancer 
cells. In addition, through GSEA, we discovered that 
the samples in high-risk group had the highest 
correlation (Enrichment score) with epithelial 
mesenchymal transformation, ECM receptor 
interaction, and Focal adhesion. These results indicate 
that these pyroptosis-associated lncRNAs are likely to 
be involved in the metastasis of ovarian cancer cells, 
providing a direction for subsequent experimental 
studies. 

5. Conclusion 
In this study, 34 pyroptosis related lncRNAs that 

have an impact on the prognosis of ovarian cancer 
patients were identified through comprehensive 
analysis of TCGA database. The prognostic signature 
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constructed using 13 pyroptosis related lncRNAs can 
not only accurately predict the survival of ovarian 
cancer patients but also is related to the high 
infiltration of macrophages and tumor-associated 
fibroblasts in ovarian cancer. In further analysis of the 
mechanism, we found that the signature may be 
related to the metastasis of ovarian cancer, and a 
pyroptosis related ceRNA network provides a basis 
for subsequent experimental studies. LNC01094 and 
KRT7-AS were observed to be overexpressed in 
ovarian cancer cell lines. 
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