
Journal of Cancer 2023, Vol. 14 
 

 
https://www.jcancer.org 

3078 

Journal of Cancer 
2023; 14(16): 3078-3098. doi: 10.7150/jca.86325 

Research Paper 

Coordination of Single-cell and Bulk RNA Sequencing to 
Construct a Cuproptosis-related Gene Prognostic 
Index for Endometrial Cancer Prognosis, Immune 
Microenvironment Infiltration, and Immunotherapy 
Treatment Options 
Xiaoao Pang1, Feifei Li2, Miao Lu1, Liancheng Zhu1 

1. Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China. 
2. Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China. 

 Corresponding author: Liancheng Zhu, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 
110004, China. E-mail: zhulc@cmu.edu.cn. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2023.05.19; Accepted: 2023.08.24; Published: 2023.09.18 

Abstract 

Background: This study aims to identify molecular subtypes and develop a cuproptosis-related gene 
prognostic index (CRGPI) for endometrial cancer (EC), in addition to outlining the immune features and 
the efficacy of immune checkpoint inhibitor (ICI) therapy in CRGPI-defined groups of EC. 
Methods: Between malignant and normal cells distinguished from single-cell RNA sequencing data 
GSE154763 dataset, the difference in KEGG pathways and cuproptosis-related gene (CRG) scores was 
intensively investigated. On the basis of TCGA dataset (n=492), CRGs were used to identify two distinct 
molecular subtypes. Using the Cox regression method, a CRGPI was constructed and externally validated 
with the IMvigor210 dataset (n=348) and GSE78220. Then, the molecular and immune characteristics and 
the efficacy of ICI therapy in subgroups defined by CRGPI were investigated. 
Results: Compared to normal cells, the expression of the TCA cycle and CRGs genes was significantly 
higher in malignant cells. The CRGPI was established on the premise of ATF5, FBXO46, P2RX4, 
SMARCD3, DAPK3, and C1orf53. Comprehensive results demonstrated a correlation between a low 
CRGPI score and better overall survival, younger age, early stage, immune cells and functions activation, 
high tumor mutation burden and high microsatellite instability, as well as better benefit from ICI therapy, 
and its significance for forecasting immunotherapeutic effects was verified as well (IMvigor210 cohort: 
HR, 1.358; 95% CI, 1.047, 1.761; p=0.02; GSE78220 cohort: HR, HR = 3.857, 95% CI, 1.009, 14.74; 
p=0.034). CRGPI anticipated the immunotherapy medication.  
Conclusions: CRGPI is a prospective biomarker to estimate the prognosis, immune and molecular 
characteristics, and treatment benefit of immunotherapy in EC. 
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Introduction 
Copper is an essential nutrient with oxidation–

reduction (redox) properties that allow it to promote 
copper-dependent cell growth and proliferation 
(cuproplasia) and mitochondrial-dependent cytotoxi-
city (cuproptosis) when it exceeds a certain threshold 

[1]. Copper directly binds to lipoylated components of 
the tricarboxylic acid cycle, resulting in the 
accumulation of lipoylated protein and subsequent 
deletion of iron-sulfur cluster protein, which 
ultimately leads to proteotoxic stress and cell death, as 
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confirmed by numerous research studies [2]. The 
specific process of excessive copper-induced cell 
death was not clarified until March 2022, when 
Tsvetkov et al. demonstrated that copper death was 
distinct from the established mechanism of cell death 
[3]. They demonstrated that copper-induced cell 
death is distinct from all known regulatory cell death 
mechanisms, including apoptosis, ferroptosis, 
pyroptosis, and necroptosis. Consequently, the 
authors propose naming this previously unclassified 
mode of cell death cuproptosis [3]. With a precise 
definition of cuproptosis, future research on 
cuproptosis-related regulatory factors in cancer may 
offer not only potential processes for the development 
and treatment of cancer, but also novel ideas for the 
classification, outcome, and prognosis of cancer's 
therapeutic responsiveness. 

Endometrial carcinoma (EC) is the most common 
malignant gynecological malignancy found in the 
female reproductive tract [4]. Globally, it is estimated 
that 76,000 women die each year [5]. In recent years, 
the number of reported cases has increased, the 
average age of onset has decreased, and the mortality 
rate has risen more quickly than the incidence rate [6]. 
Currently, there is no biomarker or signature capable 
of accurately predicting the survival rate of EC 
patients. In order to improve the overall prognosis of 
EC patients, it is crucial to identify the predictive and 
prognostic characteristics of patients at high risk. 

Immune checkpoint inhibitor (ICI) therapies, 
such as those targeting programmed death 1 (PD1), 
programmed death ligand 1 (PD-L1), and CTL 
associated protein 4 (CTLA4), have fundamentally 
altered the treatment of a variety of malignancies, 
especially advanced cancers, in comparison to 
conventional therapies [7, 8]. Despite the fact that 
some patients experience remarkable and long-lasting 
disease regression as a result of ICIs, the majority of 
patients do not benefit from these treatments, and 
some may experience the adverse phenomenon of 
hyperprogressive disease [8]. Consequently, the 
recognition of prospective prognostic indicators 
associated with therapeutic benefit may make the 
immunotherapy of EC patients more personalized 
and specific, thereby raising the possibility of a highly 
precise treatment for EC patients. 

Materials and methods  
Data gathering and preliminary processing 

Single-cell RNA sequencing (scRNA-seq) data 
GSE154763 was downloaded from GEO platform, 
which detected a total of 9 EC tissues based on the 10X 
Genomics. The TCGA database (https://portal.gdc. 
cancer.gov/) was utilized to collect EC patient 

transcriptome data (FPKM value), clinical 
information, and mutation data. In the subsequent 
studies, a total of 492 EC patients were included. 
Clinical factors included age, stage, grade, myometrial 
invasion percentage, overall survival time, and 
survival status. The RNA-seq data of 50 undifferen-
tiated uterine sarcoma samples (GSE119041) was 
downloaded. The flowchart in this study is illustrated 
in Figure S1. 

scRNA data Processing 
The processing of scRNA-seq data was described 

in a previous report [9]. The "CellCycleScoring" 
algorithm was then used to predict classification of 
each cell as either S, G2M, or G1 phase. The 
"copykat" package was utilized to predict 
the presence of diploid (normal cells) and aneuploid 
(tumor cells). 

Unsupervised clustering for 
cuproptosis-related genes 

Nineteen CRGs were identified in previous 
investigations [3, 10-12]. The "ConsensusClusterPlus" 
R package [13] was used to divide all 492 EC patients 
into distinct molecular subgroups based on CRG 
expression for consensus unsupervised clustering 
analysis.  

Functional enrichment analysis 
The variation in OS between subtypes was 

analyzed by Kaplan–Meier analysis. Gene set 
variation analysis (GSVA) was applied to the 
MSigDB-derived hallmark gene set (c2.cp.kegg.v7.2) 
to study changes in CRGs in biological processes [14].  

Evaluation of tumor microenvironment cells  
The scores of tumor microenvironment (TME) 

cells in every EC sample was evaluated by single 
sample gene set enrichment analysis (ssGSEA) 
algorithm [15]. Using the ESTIMATE method [16], 
immunological and stromal scores for each patient 
were determined. Using the CIBERSORT algorithm, 
the fractions of 22 human immune cell types in each 
EC sample were determined.  

Identification of differentially expressed genes 
Using the "limma" package in R, the 

differentially expressed genes (DEGs) among the 
cuproptosis clusters were identified with |fold 
change|>2 and p-value <0.001. Gene ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis, and the protein–
protein interaction network were performed with 
Metascape [17]. Gene Set Enrichment Analysis 
(GSEA) was employed to identify the KEGG 
pathways that are enriched in gene rank.  
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Construction of the cuproptosis-related 
prognostic index 

Beginning with a univariate Cox regression 
analysis, the prognostic DEGs were identified. Then, 
the patients were separated into distinct subtype 
groups using an unsupervised clustering algorithm 
(cuproptosis gene Cluster A and Cluster B). The 
CRGPI was then calculated using the training cohort. 
Briefly, the LASSO Cox regression was applied to 
reduce the likelihood of over-fitting based on CRG 
prognostic genes [18]. After analyzing the change 
trajectory of each independent variable, we utilized 
10x cross validation to establish the CRGPI. 
Multivariate Cox analysis was used in the training 
cohort to select candidate genes for establishing the 
prognostic CRGPI. Six genes and their training 
cohort-obtained correlative coefficients were used to 
create the CRGPI. The following equation was used to 
calculate the CRGPI: CRGPI = 
∑(Expression of each gene ∗ coefficients). On the basis 
of their median values, the patients in the training 
cohort were separated into CRGPI-low and 
CRGPI-high groups, and then a Kaplan–Meier 
survival analysis was performed. The predictive value 
of the signature was assessed through the 
development of receiver operating characteristic 
(ROC) curves. 

Clinical correlation and stratification analyses 
of the CRGPI 

Using Chi-square testing, the correlation 
between the CRGPI and clinical variables was 
investigated. On the training, testing, and total 
cohorts, univariate and multivariate analyses were 
conducted to ascertain the independence of CRGPIs 
from other clinicopathological variables. In addition, a 
stratified analysis was carried out to determine 
whether the CRGPI retained its predictive power 
across other clinical factors. 

External CRGPI verification 
External validation for the prognostic 

significance of six genes in the model is provided by 
KM-plotter database (http://www.km-plotter.com/). 
The cohort (IMvigor210) of Mariathasan et al. [19] was 
also used for external validation of CRGPI.  

TMB analysis 
Patients’ mutation information was downloaded 

from the TCGA data portal. The information was 
stored in Mutation Annotation Format and processed 
by the Var-Scan software. Adoption of the "maftools" 
package for analyzing and demonstrating gene 
mutation patterns and frequencies in different groups. 

Immune status evaluation 
The differential expression levels of human 

leukocyte antigen (HLA) family members and 
immune checkpoint biomarkers between the 
CRGPI-low and -high groups were further analyzed. 
Additionally, we analyzed the relationships between 
the two groups and microsatellite instability (MSI). 

Tumor Immune Single-cell Hub (TISCH) 
obtained data from GEO and ArrayExpress [20] to 
compile its scRNA-seq atlas, a single-cell RNA-seq 
resource concentrating on TME. TISCH2 (http:// 
tisch.comp-genomics.org) has 190 datasets and 
6,297,320 cells from tumor patients and healthy 
donors [21], enabling the investigation of TME across 
various cancer types. Using TISCH2 datasets, we 
discovered the CRGPI gene heterogeneity among 
immune cells in endometrial cancer at the single-cell 
level. 

Forecasting immunotherapy response 
Immunotherapy response was first evaluated by 

immunophenoscore (IPS) analysis [22]. The Cancer 
Immunome Atlas (TCIA) provided the IPSs of EC 
patients (https://tcia.at/home). Time-dependent 
ROC curve analyses were performed to obtain the 
AUC and compared the prognostic value of CRGPI, 
TMB, MSI, and TIS using the timeROC package in R. 
The TIS score was calculated as the mean log2-scale 
normalized expression of the 18 signature genes [23]. 

In addition, three transcriptomic data sets with 
clinical data from patients with metastatic urothelial 
cancer treated with an anti–PD-L1 agent (IMvigor210 
cohort [19]), patients with metastatic melanoma 
treated with anti–PD-1 pembrolizumab (GSE78220 
[24]), patients with advanced clear cell renal cell 
carcinoma treated with anti-PD-1 Nivolumab and 
anti-mTOR inhibitor everolimus (CheckMate025 [25]) 
were downloaded and analyzed to evaluate response 
of immunotherapy and determine the predictive 
value of the CRGPI [26]. 

Assessment of chemotherapeutic and 
molecular drugs’ sensitivity 

In order to predict the response to chemotherapy 
and molecular drugs, the "pRRophetic" package 
employed to compute the CRGPI [27]; the 
half-maximal inhibitory concentration (IC50) was 
calculated between the low and high groups for 251 
common chemotherapeutic agents.  

Statistical analysis 
We conducted statistical analyses using R 

(version 4.2.0) and RStudio (version 2022.02.2 Build 
485 for macOS). The Mann–Whitney U test was used 
to compare differences between two groups. For the 
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analysis of differences between more than two 
groups, the Kruskal-Wallis test was utilized. P < 0.05 
was regarded statistically significant in all two-tailed 
tests, unless otherwise specified. 

Results 
scRNA-seq data quality control, 
normalization, and bioinformatics analysis 

Due to lack of the raw data in GSE154763, we 
only obtained the processed data. A total of 8808 cells 
were obtained by filtering the single-cell data so that 
each gene was expressed in at least 3 cells and each 
cell expressed at least 300 genes. To reduce the bias 
caused by too large differences in sample sizes, we 
kept only the GSM datasets with a cell count > 500 in 
this study. Table 1 presents the cell count data for each 
sample before and after filtration. As shown in Figure 
S2A, there was a significant correlation (R = 0.82) 
between the number of UMI and mRNA. Figures S2B 
and C illustrate the violin before and after quality 
assurance. The available dimensions were estimated 
using principal component analysis (PCA), and the 
results did not disclose any significant differences 
between EC cells. Forty of the most distinctive 
primary components were chosen for additional 
examination (Figure S2D). 

 
Table 1. Cell count for each sample in GSE154763. 

GSM  Patient Raw-count Clean-count Percent % 
GSM4679335 P20190312 189 189 100.00  
GSM4679336 P20181122 609 606 99.51  
GSM4679337 P20181211 52 50 96.15  
GSM4679338 P20190213 334 329 98.50  
GSM4679339 P20190305 513 512 99.81  
GSM4679340 P20190625 254 244 96.06  
GSM4679341 P20190717 349 345 98.85  
GSM4679342 P20190910 2543 2535 99.69  
GSM4679343 P20190911 3965 3957 99.80  

 
 
Figure 1a depicts the TSNE diagram for the 

distribution of four GSM samples, while Figure 1b 
depicts the distribution of cells in various cell cycle 
phases. Figure 1c depicts that there were 5,911 tumor 
cells, 1,667 normal cells, and 32 unidentified cells. As 
demonstrated in Figure 1d, the proportion of tumor 
cells in the vast majority of EC samples was 
substantially greater than the proportion of normal 
cells. The preponderance of cells were in the G1 
phase, and the proportion of cells in the G2M phase 
was nearly equal to that of cells in the S phase (Figure 
1e). After segregating tumor cells from EC tissues, 
ssGSEA was used to calculate the enrichment scores 
of KEGG pathways at the level of a single cell. Our 
findings demonstrated that the citrate cycle TCA 
scores of tumor cells were considerably higher than 
those of normal cells (Figures 1f, g), suggesting that 

the EC may develop by mediating CRG-related 
processes. CRG-targeted interventions can induce 
tumor cell apoptosis and improve patient prognosis. 
Figures 1h, i depict the subpopulation distributions of 
CRG-related genes in solitary cells. 

Genetic and transcriptional change of CRGs 
Our summary analysis of the incidence of 

somatic mutations in 19 CRGs showed that 137 
(26.45%) of 518 EC samples of TCGA had CRG 
mutations (Figure 2a). Among them, the mutation 
frequency of ATP7A was the highest (9%), followed 
by NLRP3, NFE2L2, ATP7B, MTF1, and DLSTT, while 
LIPT2 had no mutation. Next, we studied somatic 
copy number changes in these CRGs and found 
common copy number changes in all 19 CRGs. 
Among them, LIPT2, NLRP3, NFE2L2, MTF1, GLS, 
PDHA1 had extensive increase in copy number 
variation (CNV), while FDX1, PDHB, DLAT, GCSH, 
and ATP7B showed decrease in CNV (Figure 2b). The 
location of CNV changes in CRG on their respective 
chromosomes is shown in Figure 2c. We further 
compared the mRNA expression levels of 19 CRGs in 
EC and normal endometrial tissues, and found that 16 
CRGs had significant differential expression, of which 
8 genes were highly expressed in EC and 8 showed 
low expression (Figure 2d). In order to further explore 
the interaction of these CRGs, we conducted 
protein-protein interaction (PPI) analysis by String 
database (https://cn.string-db.org/). We found that 
there were extensive interactions among these CRGs 
(Figure 2e).  

Identification of cuproptosis subtypes 
To fully understand the expression pattern of 

CRG involved in EC tumorigenesis, 492 patients with 
full clinical data from TCGA database were collected 
in our study for further analysis. The results of 
univariate Cox regression and Kaplan–Meier analysis 
revealed the prognostic values of 11 CRGs in patients 
with EC, determined the optimal cutoff value through 
the ‘surv cutpoint’ function, and p<0.05 was selected 
as the threshold for filtering (Figure S4). Next, we 
performed a multivariate Cox regression analysis on 
11 prognostic CRGs, CDKN2A, PDHA1, GLS, DBT, 
and SLC31A1 were identified as independent 
predictive factors (Table 2).  

 

Table 2. Multivariate Cox regression analysis of prognostic CRGs 
associated with overall survival in EC patients. 

gene coef HR HR.95L HR.95H p value 
CDKN2A 0.00807812 1.00811083 0.99919657 1.01710462 0.07465141 
PDHA1 0.02499727 1.02531232 1.00640327 1.04457666 0.00848757 
GLS 0.04456927 1.0455774 1.00835584 1.08417293 0.0159572 
DBT 0.3117633 1.36583136 1.05008194 1.77652356 0.02010988 
SLC31A1 -0.0691128 0.93322139 0.86122545 1.01123599 0.0915653 



 Journal of Cancer 2023, Vol. 14 

 
https://www.jcancer.org 

3082 

 
Figure 1. Normal and malignant endometrial cells. (a) A t-SNE map illustrating the distribution of cells in each EC sample, with each color representing a different 
sample's cells. (b) The t-SNE diagram displays the color-coded distribution of cell cycle characteristics. (c) The t-SNE diagrams of tumor and normal cells in EC samples are 
depicted with distinct hues. (d) The ratio of tumor cells to normal cells presents in each EC sample. (e) The proportion of cells in the G1, G2/M, and S phases in each EC sample. 
(f, g) The enrichment scores of different KEGG signal pathways in normal and malignant cells of each EC sample. (g, h) Difference in expression of CRGs between tumor and 
normal cells in EC. 

 
To further explore the expression characteristics 

of CRGs in EC, we used a consensus clustering 
algorithm to categorize the patients with EC (Figure 
S5). According to the clustering criteria, we chose k = 
2 to be an optimal selection for sorting the entire 

cohort (Figure 3a). Thus, two subtypes, designated 
Cluster A, and Cluster B, respectively, were 
identified, in which Cluster A included 103 cases, and 
Cluster B included 389 cases. Kaplan-Meier survival 
analysis revealed that overall survival (OS) differed 
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obviously among the two subtypes, and Cluster A 
had noticeable survival worse preference (log-rank 
test, p = 0.00051, Figure 3b). Due to the rarity of GSE 
datasets including comprehensive clinical data for EC, 
despite the fact that the pathological type is sarcomas, 
we attempted to use GSE119041 to externally validate 
the repeatability of clustering. Again, we observed 
that two unique subgroups with relative dissimilar 
prognosis difference were clearly discovered (Figure 
S6). Most of the 18 CRGs in the two clusters displayed 
statistically significant expression differences (Figure 
3c). In addition, the association between the two 
subtypes and a number of clinicopathological 
parameters (survival status, age, stage, grade, 
myometrial invasion, diabetes, hypertension) was 
explored, and survival status, age, and grade were 
found to have a clearly correlation with the clusters 
(Figure 3d). 

Characteristics of TME and biological function 
in different cuproptosis subtypes 

GSVA enrichment analysis was done to explore 
the biological and functional differences between two 
subtypes (Figure 3e, Table S1). Cluster A was 
primarily enriched in carcinogenesis pathways, such 
as DNA replication and mismatch repair; Cluster B 
was primarily enriched in drug metabolism 

cytochrome p450, VEGF signaling route, PPAR 
signaling pathway, and other pathways. We 
examined the enrichment score of immune cells in the 
two categories using ssGSEA (Figure 3f). Cluster A 
suppressed the vast majority of immune cells, such as 
activated B cells, CD4/8 T cells, dendritic cells, CD56 
dim natural killer cells, MDSC, mast cells, natural 
killer cells, Type 2/17 T helper cells, etc. To study 
further the variations in TME-infiltrating cell 
composition between the two clusters, the relative 
percentage of 22 types of immune cells was computed 
for each patient using the CIBERSORT method 
(Figure 3g). The findings of evaluating the TME score 
(stromal score, immune score, and estimate score) of 
the two clusters using the ESTIMATE package 
revealed that Cluster A patients had lower TME 
scores (Figure 3h). Regarding tumor purity, Cluster A 
has a higher score than Cluster B (Figure 3i). 
Clinically, targeted therapy research and 
development for malignant tumors is on the rise. We 
explored the association between the two clusters and 
the gene expression of common checkpoints and 
discovered that a number of checkpoint genes, 
including CD27/28/40/44/244/276, VTCN1, and 
TNFSF14, displayed substantial changes between the 
two clusters (Figure 3j). 

 

 
Figure 2. Genetic and transcriptional alterations of CRGs in EC. (a) Mutation frequencies of 19 CRGs in 518 EC patients from the TCGA cohort. (b)Frequencies of 
CNV gain, loss, and non-CNV among CRGs. (c) Locations of CNV alterations in CRGs on 23 chromosomes. (d) Expression distributions of 16 differentially expressed CRGs 
between normal and EC tissues. (e) PPI network showing the interactions of the CRGs (The minimum interaction score required for PPI analysis was set to 0.4 (moderate 
confidence)). CRGs, cuproptosis-related genes; EC, endometrial cancer; TCGA, The Cancer Genome Atlas; CNV, copy number variant. 
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Figure 3. Molecular subtypes constructed based on CRGs and their biological characteristics and TME differences. (a)Consensus matrix of EC patients, k = 2, 
using the unsupervised consensus clustering approach. (b)Kaplan–Meier curve for overall survival of all EC patients with two cuproptosis subtypes (log-rank test, P =0.00051). 
(c)The 18 CRGs expression difference in EC patients stratified by two cuproptosis subtypes. (d)Differences between clinicopathologic features and two cuproptosis subtypes. 
(e)GSVA of KEGG biological pathways in two cuproptosis subtypes. Orange represents activation of biological pathways and blue represents inhibition of biological pathways, 
respectively. (f)Comparison of the ssGSEA scores for immune cells in the two cuproptosis subtypes. The line in the box represents the median value. (g)The relative percentage 
of subpopulations of immune cells in EC samples stratified by two cuproptosis subtypes. (h)Comparison between the TME score (stromal score, immune score, and Estimate 
score) and two cuproptosis subtypes. (i)Comparison between the tumor purity and two cuproptosis subtypes. (j)Expression levels difference of check-points genes in the two 
cuproptosis subtypes. TME, tumor microenvironment; EC, endometrial cancer; GSVA, gene set variation analysis; ssGSEA, single sample gene set enrichment analysis. The 
asterisk represents the p value (*p<.05, **p<.01, ***p<.001, similarly hereinafter). 

 

DEG-based identification of gene subtypes 
To examine the probable biological function of 

each cuproptosis subtype in EC, the "limma" R 
package was used to detect the DEGs between the two 
clusters, resulting in the identification of 2,152 DEGs 
associated to cuproptosis subtypes (Table S2). The 
DEGs were significantly abundant in cell cycle and 

carcinogenesis-related pathways, such as cell cycle, 
platinum drug resistance, cancer pathways, p53 
signaling, DNA replication, and AMPK signaling 
pathway, according to KEGG enrichment analysis 
(Figure 4a). Circos plot found extensive relationships 
between gene groups with high and low expression 
differentials (Figure 4b). Additionally, GO enrichment 
analysis found that DEGs are enriched in the cell 
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cycle, DNA replication, p53 pathway, and other 
categories (Figure 4c). According to GSEA, 
immune-related pathways were enriched, including 
natural killer cell mediated cytotoxicity, antigen 
processing and presentation, and Rap1 signaling 
pathway (Figure 4d). 

Then, we determined the predictive significance 
of DEGs using univariate Cox regression analysis and 
identified 75 genes related with overall survival 
(p<0.001) for further study. To further examine the 
regulation mechanism of the 75 prognostic genes, EC 
patients were divided using a consensus clustering 
method in order to investigate the process (Figure S7). 
We selected k = 2 to split all EC patients into gene 
subtypes A and B. (Figure 4e). Subsequent analysis of 
OS indicated a statistically significant difference 
between the two gene subtypes (log-rank test, p = 
0.0036, Figure 4f). As predicted, the expression of the 
CRGs differed substantially between the two gene 

clusters (Figure 4g). Additionally, the link between 
the two gene clusters and other clinicopathological 
variables, including clusters of cuproptosis, was 
examined (Figure 4h). 

Construction the CRGPI in the training cohort 
The CRGPI was established based on the 

prognostically relevant DEGs in the training group. 
First, Lasso analysis suggested 14 genes based on the 
minimum partial likelihood deviation (Figure 5a); 
Next, we performed multivariate Cox regression 
analysis on these genes, which revealed that six genes, 
including ATF5, FBXO46, P2RX4, SMARCD3, 
DAPK3, and C1orf53, were independent prognostic 
factors for patients with EC. Table S2 contains the 
correlation coefficients. Our CRGPI is computed 
based on the results of a multivariate Cox regression 
analysis as follows: 

 

 
Figure 4. Identification of gene subtypes based on the DEGs of cuproptosis-related clusters. (a-c) KEGG enrichment analysis (a), Circos plot (b), and GO 
enrichment analysis (c) of DEGs by Metascape. (d) GSEA plots of DEGs. (e)Identification of gene subtypes based on prognostic DEGs among two cuproptosis subtypes. (f) 
Kaplan–Meier curves for overall survival with two gene subtypes (log-rank test, p =0.0036). (g) Differences in the expression of 18 CRGs among the two gene subtypes. (h) 
Heatmap showing the relationships between clinicopathologic features, cuproptosis subtypes, and the two gene subtypes. DEGs, differentially expressed protein-coding genes; 
GO, Gene Ontology; CRGs, cuproptosis-related genes. 
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Figure 5. Construction of CRGPI in training cohort. (a)The LASSO regression analysis and partial likelihood deviance on the prognostic genes. (b)Kaplan–Meier analysis 
of the overall survival between the CRGPI-high and CRGPI-low groups in the training cohort. (c)ROC curves and their AUC values for CRGPI represented 1-, 3-, 5-, and 10-year 
predictions. (d)ROC curves of CRGPI and clinicopathological factors (age, grade, stage, and myometrial invasion) for 5-year AUC. (e)Scatter plot showing the correlation 
between the survival status and CRGPI. (f)Risk score distribution plot showing the distribution of the CRGPI-high and CRGPI-low. (g)Heatmap showing expression of the six 
genes between the CRGPI-high and CRGPI-low groups. 

 
CRGPI = 0.0075*ATF5 + 0.1072*FBXO46 + 

-0.2219*P2RX4 + 0.0767*SMARCD3 + -0.1188*DAPK3 
+ 0.06680*C1orf53. 

Based on the median CRGPI, patients were 
separated into two groups: those with a high CRGPI 
and those with a low CRGPI. The CRGPI-high group 
in the training cohort had a poorer prognosis, as 

evidenced by Kaplan–Meier curves (Figure 5b). Using 
the ROC curve, the accuracy of the prognostic 
signature was determined; the AUC values for 1, 3, 5, 
and 10 years of OS were 0.803, 0.854, 0.904, and 0.967, 
respectively (Figure 5c). The predictive signature 
exhibits the highest 5-year AUC values relative to 
other clinicopathological variables (age, stage, grade, 
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and myometrial invasion) (Figure 5d). As illustrated 
by the scatter plot, EC patients with a high CRGPI had 
a shorter survival rate than those with a low CRGPI 
(Figure 5e). The CRGPI distribution map 
corresponded to patient group categorization (Figure 
5f). In addition, the heatmap revealed substantial 
differences between CRGPI-high and CRGPI-low 
groups in the expression of six CRGPI genes (Figure 
5g). 

Internal and External Validation of the CRGPI 
To validate the predictive value of the CRGPI, 

CRGPIs of patients in testing cohorts and overall 
cohorts were calculated, and patients were 
categorized into CRGPI-low and CRGPI-high groups 
based on the median CRGPIs in the training cohorts. 
The Kaplan-Meier and ROC analysis of OS survival in 
the testing and total cohorts revealed that these results 
were comparable to those of the training cohorts 
(Figure S8a-c, g-i). These results verified the CRGPI 
further. According to the CRGPI distribution map, the 
survival rate of the CRGPI-high group was less than 
that of the CRGPI-low group (testing cohorts, Figures 
S6d, e; overall cohorts, Figure S8j, k). The heatmaps 
illustrate the expression profiles of six genes in the 
training cohorts (testing cohorts, Figures S6f; overall 
cohorts, Figure S8l). 

Using the "IMvigor210" dataset containing 
clinical information and RNA-seq data from 
metastatic urothelial cancer patients treated with the 
ICI atezolizumab (PD-L1 inhibitor) [19], we further 
validated this observation. Using the correlation 
coefficient to construct the CRGPI, the IMvigor210 
cohort was divided into high and low CRGPI groups. 
Patients with a low-CRGPI had a clearly better 
prognosis (Figure 10e), and there was preliminary 
evidence that patients with a low-CRGPI had a better 
immunotherapy outcome than those with a 
high-CRGPI. Figure 6a depicts the consistent 
expression profiles of six CRGPI genes in the 
IMvigor210 cohorts using a heatmap. The majority of 
gene expression was significantly different between 
the high and low groups, and the trend reported in EC 
was replicated (Figure 6b). Figure 6c displayed the 
AUC values for 5-, 10-, and 15-years of OS, whereas 
Figure 6d displayed the concordance index curves of 
CRGPI. These outcomes revealed that our CRGPI had 
a reliable prognostic and predictive potential. 

Using the KM plotter database, we investigated 
the predictive effect of the six CRGPI genes in 542 EC 
patients. High expression levels of ATF5, FBXO46, 
SMARCD3, and C1orf53 were seen to be associated 
with a poorer OS, whereas low expression levels of 
P2RX4 and DAPK3 were observed to be related with a 
poorer OS (Figure 6e). These findings aligned with the 

trend reported in the TCGA database.  
Using the CPTAC database (http://ualcan. 

path.uab.edu), we examined the expression of 
prognostic proteins in EC and normal endometrial 
tissue. Figure 6f demonstrates that the expression 
levels of DAPK3, P2RX4, and SMARCD3 in EC were 
significantly different from those in normal 
endometrial tissue (all p<0.001). In the HPA database 
(https://www.proteinatlas.org), the protein expres-
sion of DAPK and SMARCD3 in endometrial tissue 
was medium to low, while their expression in EC was 
low; the protein expression of P2RX4 in EC was high 
to medium, while its expression in endometrial tissue 
was low to undetectable (Figure 6g). 

In order to further illustrate the predictive ability 
of our CRGPI, we examined and compared four 
published EC prognostic models with our own. 
Compared to Shan’s cuproptosis-related subgroup’s 
gene signature [28], Liu's ferroptosis-related gene 
signature [29], Liu's EMT-related gene signature [30], 
and Wang's immune-related gene signature [31], 
survival curves revealed that the prognosis for 
high-risk group patients was significantly worse in all 
of these models (all p < 0.05, Figure S9a). According to 
the ROC curve, the AUC values for these four models 
were less than ours (Figure S9b). The time-dependent 
AUC plot and concordance index plot provide 
additional support (Figure S9c, d). These results 
suggested that the efficacy of our CRGPI appeared 
superior to that of other studies previously reported. 

Analysis of clinical correlation and 
stratification of the CRGPI 

The alluvial diagram was applied to represent 
the survival differential between the different 
cuproptosis clusters, gene clusters, CRGPI, and 
survival status with greater clarity (Figure 7a). The 
majority of cuproptosis cluster A patients also 
belonged to the CRGPI-high group, which had the 
poorest survival outcome; similarly, gene Cluster B 
with CRGPI-high patients likewise had the poorest 
survival outcome (Figure 7b). The correlation between 
the CRGPI and clinicopathological variables was then 
examined. Myometrial invasion did not correlate with 
CRGPIs (Figure 7c). All stratified clinicopathological 
parameters (age, stage, and grade, all p < 0.001, Figure 
7d) could be accurately predicted using the CRGPIs. 

Furthermore, based on the results of 
immunotyping of pancancer in the literature [32], we 
compared the relationship between CRGPI and 
immunotyping of EC and discovered that there were 
significant differences between the four existing 
immune subtypes C1 (wood healing), C2 (IFN gamma 
dominant), C3 (inflammatory), and C4 (lymphocyte 
completed) and CRGPI in the TCGA dataset of EC, 
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indicating a potential relationship between our 
CRGPI and immune subtypes (Figure 7e). As 
expected, there were distinct changes in CRG 
expression across groups with high and low CRGPI 
(Figure 7f). The majority of prognostic signature 
proteins are positively associated, as shown by their 
correlation analysis (Figure 7g). 

Association between the CRGPI and tumor 
infiltrating immune cells 

Previous findings indicated that our CRGPI may 
be associated with tumor immunity. Comparing the 
TME scores of each CRGPI group, we found that the 
CRGPI-high group had considerably lower TME 
scores (all p < 0.01, Figure 8a) and a significantly 
higher score for tumor purity (p < 0.001, Figure 8b). 
CRGPI was positively correlated with active dendritic 
cells, B cells naive, resting T cells CD4 memory, and T 
cells follicular helper, but negatively correlated with 
regulatory T cells, resting Dendritic cells, T cells CD8, 
and plasma cells (all p < 0.05, Figure 8c). Many 
immune cells (Figure 8d) and immunological 
functions (Figure 8e) exhibited notable differences 

between the two CRGPI groups, with the CRGPI-low 
group displaying a greater number of more immune 
cells and immunological functions. In addition, 
CRGPI was strongly positively linked with cancer 
stem cells (R = 0.27, p < 0.001, Figure 8f), indicating 
that samples with higher scores displayed more 
pronounced stem cell features and less cell 
differentiation. Overall, these data revealed that the 
CRGPI reflected the degree of immune cell and tumor 
microenvironment (TME) infiltration; the level of 
immune infiltration was lower in the CRGPI-high 
group, which had a poorer prognosis; immune 
infiltration is responsible for adaptive antitumor 
immunity. 

Single-Cell level analysis of CRGPI 
Herein, we intended to localize six CRGPI genes 

at the level of a single cell in order to examine their 
possible link with immune cells. By examining the 
TISCH2 database, we observed that all six genes were 
expressed in immunological single cell subpopula-
tions (Figure 8g-l). 

 

 
Figure 6. External validation for CRGPI. (a)Heatmap showing expression of the six genes between the CRGPI-high and CRGPI-low groups in IMvigor210 datasets. 
(b)Boxplot showing the expression difference of six genes between the CRGPI-high and CRGPI-low groups in IMvigor210 datasets. (c)ROC curves and their AUC values for 
CRGPI represented 5-, 10- and 15-year predictions in in IMvigor210 datasets. (d)Concordance index curves of CRGPI and clinicopathological factors (sex, race, and stage) for 
0-25 years in IMvigor210 datasets. (e)Kaplan-Meier survival analysis plot of each CRGPI gene in CRGPI by KM plotter database. (f)The boxplot showing the difference in protein 
expression of 3 CRGPI genes: DAPK3, P2RX4, and SMARCD3, according to CPTAC database; (g)The typical protein expression figures by immunohistochemistrical staining for 
3 CRGPI genes: DAPK3, P2RX4, and SMARCD3, according to HPA database. 
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Figure 7. Correlation between CRGPI and clinicopathological variables. (a)An alluvial representation of the distribution of the cuproptosis cluster, gene cluster in two 
CRGPI groups, and survival outcomes. (b)The K-M survival curves were stratified according to cuproptosis cluster and CRGPI subgroup (left panel), as well as gene cluster and 
CRGPI subgroup (right panel). (c)A comparison of clinicopathological variables (survival, age, stage, grade, and myometrial invasion) with CRGPI. (d)The K-M survival curves for 
two CRGPI groups were stratified by age (<=60 and >60 years), stage (Stage I-II and Stage III-IV), and grade (G1-G2, G3-G4). (e)Difference of CRGPI among the immune 
subgroups (C1-Wound Healing, C2-IFN-gamma Dominant, C3- Inflammatory, C4-Lymphocyte Depleted). (f)The CRGs expression difference in EC patients stratified by CRGPI 
subtypes. (g)The co-relationship of six proteins in the CRGPI. 

 
 
Six cell types were identified in UCEC GSE13955, 

including CD4Tconv, CD8T, CD8Tex, Fibroblasts, 
Tprolif, and Treg, with CD4Tconv cells exhibiting the 
highest cell numbers (Figure 8g-i). And all of the six 
cell types exhibited six CRGPI gene expression 
(Figure 8j), with the Fibroblasts subgroup cells 

displaying the greatest abundance of all six genes 
(Figure 8k), as well as the greatest number of tumor 
cells relative to normal endometrial cells (p < 0.001, 
Figure 8l). Four cell types were identified in UCEC 
GSE154763, including DC, Mast, Mono/Macro, and 
pDC, while Mono/Macro cells exhibited the most 
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abundant cell counts (Figure S10a-c). And all four cell 
types expressed six CRGPI genes (Figure S10d-f), with 
ATF5 being predominantly expressed in pDC cells, 
DAPK3 and SMARCD3 being highly elevated in Mast 
cells, and P2RX4/C1orf63 being largely expressed in 
Mono/Mast cells (Figure S10e). ATF5 was 
significantly expressed on Mono/Macro and pDC 
subgroups in tumor cells, whereas C1orf53 was 
predominantly expressed on Mono/Macro subgroup 
and SMARCD3 was predominantly expressed on 
Mast subgroup (Figure S10f). The foregoing 
single-cell investigations demonstrated that the 
CRGPI genes were highly expressed in all immune 
cell subsets of endometrial cancer, thus validating the 
relationship between CRGPI and TME. 

CRGPI correlation with TMB and MSI 

The TMB of the CRGPI-high group was 
significantly lower than that of the CRGP-low group, 
as indicated by the results (p < 0.001, Figure 9a). The 
correlation analysis of CRGPI and TMB revealed a 
significant negative correlation (R = -0.25, p < 0.001, 
Figure 9b) between the two variables. Next, we 
analyzed the TMB's effect on prognosis and found 
that elevated TMB was associated with better 
prognoses in EC patients (Figure 9c). Considering the 
synergistic effect of TMB and CRGPI, their effect on 
prognostic stratification was assessed. As depicted in 
Figure 9d, the survival difference of CRGPI subtypes 
was statistically significant in both high and low TMB 
groups (p < 0.001), with the poorest prognosis 
belonging to low TMB patients in the CRGPI high 
group. By analyzing the relationship between the 
CRGPI and MSI status, we determined that 39% of 
MSI-H patients were in the CRGPI-high group and 
27% were in the CRGPI-low group (Figure 9e). 
Furthermore, the CRGPI was significantly lower in 
MSI-H patients than in MSS and MSI-L patients 
(Figure 9f, p < 0.001). MSI-H patients had a relatively 
better prognosis compared to MSS patients (P = 0.04, 
Figure 9g). In addition, we evaluated differences 
between CRGPI-high and CRGPI-low groups 
regarding somatic variation driving genes. We 
mapped the top 15 driving genes with the highest 
mutation frequency in the CRGPI high and low 
groups using the waterfall diagram (Figure 9h, i). The 
mutation frequency of many genes, including TP53, 
PTEN, ARID1A, CTCF, CTNNB1, and DNAH11 
differed significantly between the CRGPI-high and 
-low groups, as revealed by an analysis of the 
mutation annotation files (Figure 9j). What’s more, we 
searched the mutation status of six CRGPI genes on 
the cBioPortal website (Figure 9k). The gene mutation 

frequencies from high to low are FBXO46, ATF5, 
SMARCD3, DAPK3, C1orf53, and P2RX4 (Figure 9l). 
Among them, missense mutation was the most 
common type of mutation, followed by amplification, 
deep deletion and finally multiple alterations (Figures 
9l, m). 

TMB and MSI status are well-known to be 
promising predictive biomarkers for immune 
checkpoint inhibitor treatment [8, 33]. These results 
suggest that the CRGPI was clearly associated with 
TMB and MSI status, which may provide novel ideas 
for investigating targeted therapy and 
immunotherapy based on the CRGPI composition 
and gene mutation. 

Predicting immunotherapeutic benefits 

In light of the significance of immunotherapies 
based on HLA and checkpoint inhibitors, we 
evaluated the differences in HLA family members 
and immune checkpoint expression between the two 
CRGPI groups. Significant differences were observed 
in the expression of HLA members, with the majority 
of HLA members exhibiting high expression in 
CRGPI low group (Figure 10a); with regard to 
checkpoints, we observed that numerous genes 
exhibited differential expression between two groups, 
with CTLA4, PDCD1 exhibiting high expression in 
CRGPI low group (Figure 10b).  

Most HLA and checkpoint genes were broadly 
connected with the CRGPI six genes, with FBXO46 
being primarily negatively correlated (Figure S11a), 
and ATF5 being primarily positively correlated 
(Figure S11b).  

Using Immunophenoscore, we subsequently 
evaluated the response to immune checkpoint 
inhibitors (CTLA4-PD1-, CTLA4-PD1+, CTLA4+PD-, 
and CTLA4+PD-) in subgroups stratified by CRGPI. 
Figure 10c demonstrates that the CRGPI-low group 
had a bigger IPS, indicating a higher immunogenicity 
of tumors and a greater responsiveness to ICI. We 
examined the predictive significance of the CRGPI in 
33 distinct TCGA cancer cohorts with 10071 tumors 
(Table S3). The CRGPI was supported as a favorable 
prognostic biomarker in seven independent TCGA 
cohorts (Figure 10d), including endometrial cancer, 
brain lower grade glioma, uveal melanoma, 
glioblastoma multiforme, sarcoma, liver hepatocel-
lular carcinoma, and lung squamous cell carcinoma, 
despite heterogeneous subgroup analysis results. 

Monoclonal anti-bodies that block the T-cell 
inhibitory molecules PD-L1 and PD-1 have emerged 
as an anticancer treatment with exceptional and 
synergistic survival effects. 
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Figure 8. The landscape of immune microenvironment with CRGPI. (a)Correlations between CRGPI and immune score, stromal score, and ESTIMATE score. 
(b)Correlations between CRGPI and tumor purity. (c)Correlations between CRGPI and immune cell type based on CIBERSORT. (d-e). Comparison of the ssGSEA scores for 
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immune cells (d) and immune functions (e) for patients between the CRGPI-high and -low groups. The line in the box represents the median value. (f) The linear correlation 
between CRGPI and cancer steam cell index. (g-i) The cell types and their subgroup distribution in UCEC GSE13955 dataset; (j) Distribution of CRGPI six genes in different cells 
in UCEC GSE13955 dataset; (k) Distribution of six CRGPI gene’s expression in different cell types using violin plot in UCEC GSE13955 dataset; (l) Distribution of six CRGPI 
gene’s expression in different cell types of normal endometrial and tumor cells in UCEC GSE13955 dataset. 

 
 

 
Figure 9. Mutation spectrum and MSI analysis of the patients between two groups. (a) The TMB of CRGPI-high group was significantly lower than that of CRGPI-low 
group. (b) The scatterplot depicted the negative correlation between CRGPI and TMB. (c) KM curves of overall survival in different TMB subgroups. (d) KM curves of overall 
survival stratified by both TMB and CRGPI. (e) The differences in the percent of MSI-H, MSI-L, and MSS status between CRGPI-high and -low groups. (f) The CRGPI of MSI-H 
group was significantly lower than that of MSS/MSI-L group. (g) KM curves of overall survival in different MSI subgroups. (h, i) The waterfall diagram showed that top 15 driver 
genes exhibiting the highest mutation frequency in CRGPI-high group (h) and CRGPI-low group (i). (j) Forest plot showed the genes that exhibit significant differences in 
mutational rate between the two groups. (k) Frequency of mutation in six CRGPI genes in uterus endometrial cancer. (l, m) Mutation of each gene. 
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Figure 10. The CRGPI is a prognostic biomarker and predict patients’ immunotherapeutic benefit. (a)The expression of HLA family members between high and 
low CRGPI in EC patients of TCGA cohort; (b)The expression of immune checkpoints between high and low CRGPI in EC patients of TCGA cohort; (c)The association 
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between IPS and the CRGPI in EC patients of TCGA cohort; (d)Subgroup analyses estimating prognostic value of CRGPI in different cancer types from TCGA data sets. The 
length of horizontal line represents the 95% confidence interval for each group. The vertical box line represents the HR of all patients. (e)K–M survival analysis of the CRGPI 
subgroups in IMvigor210 cohort; (f)The time-dependent AUC showing the comparison of CRGPI, TIDE, TIS, and TMB in time range from 0 to 25 years in IMvigor210 cohort; 
(g)Proportions of anti-PD-L1 immunotherapy response in high and low CRGPI groups in IMvigor210 cohort; (h-j) The difference of CRGPI among PD-L1 expression of different 
IC (h), TC (i), and immune subtypes (j) in the IMvigor210 cohort. (k) K–M survival analysis of the CRGPI subgroups in CheckMate025 cohort; (l) ROC curves and their AUC 
values for CRGPI in 1-, 3-, and 5-year predictions in in CheckMate025 cohort; (m) The time-dependent AUC showing the comparison of CRGPI, and TIS in time range from 0 
to 6 years in CheckMate025 cohort; (n) Proportions of anti-PD-1 immunotherapy response in high and low CRGPI groups in CheckMate025 cohort; (o) K–M survival analysis 
of the CRGPI subgroups in GSE78220 cohort; (p) ROC curves and their AUC values for CRGPI in 6-, 12-, and 18-month predictions in in GSE78220 cohort; (q) The 
time-dependent AUC showing the comparison of CRGPI, and TIS in time range from 0 to 24 months in GSE78220 cohort; (r) Proportions of anti-PD-1 immunotherapy response 
in high and low CRGPI groups in GSE78220 cohort; PR, Partial Response; PD, Progressive Disease; SD, Stable Disease; CR, Complete Response; IC, tumor-infiltrating immune 
cells; TC, tumor cells. 

 
Next, we investigated the predictive utility of the 

CRGPI for immune-checkpoint therapy by separating 
patients in the IMvigor210, Checkmate025 (anti-PD-1 
group), and GSE78220 cohorts into high and low 
CRGPI groups. In the IMvigor210 cohort (HR, 1.358; 
95% CI, 1.047, 1.761; Figure 10e), Checkmate025 
cohort (HR, 2.174; 95%CI, 1.520, 3.112; Figure 10k), 
and the GSE78220 cohort (HR, 3.857; 95% CI, 1.009, 
14.74; Figure 10o), patients with a high CRGPI had 
significantly shorter overall survival than those with a 
low CRGPI. The predictive value of the CRGPI to 
checkpoint immunotherapy was also confirmed in 
IMvigor210 (Figure 10f-j), Checkmate025 (Figure 
10l-n) and GSE78220 (Figure 10p-r). The relationship 
between the CRGPI and the IC, TC, and immune 
types was analyzed, revealing that the CRGPI of IC2 
was lower than that of IC0 (Figure 10h), that TC2 had 
a lower CRGPI than the other two groups (Figure 10i), 
and that the immune-inflamed type has the lowest 
CRGPI compared to the immune-desert and 
immune-excluded types (Figure 10j). The CRGPI was 
negatively correlated with the PD-L1 expression level, 
and a low CRGPI was strongly associated with the 
immune-inflamed subtype. 

The predictive utility for CheckMate025 was 
further validated in its merged group (Figure S12a), 
but it’s not significant for anti-mTOR inhibitor 
subgroup (Figure S12b), this is concordance with the 
conclusion that OS benefit with nivolumab over the 
everolimus [25]. The similar trend was also observed 
as to the progression-free survival (Figure S12 c-e). 

We assessed the clinical utility of CRGPI in 
response to immunotherapy. Patients with lower 
CRGPI were more likely to benefit from 
immune-checkpoint therapy (IMvigor210 cohort: 
two-sided, P=0.024; Figure 10g; CheckMate025 cohort: 
P=0.003, Figure 10n). Although the difference was not 
statistically significant, the overall trend was similar 
(GSE78220, two-sided Fisher exact test, P=0.372, 
Figure 10r). 

TMB, a promising predictive biomarker for 
efficacy of immunotherapy, was also assessed in the 
IMvigor210 cohort. We did not find any predictive 
advantage of TMB over CRGPI, but combining TMB 
and CRGPI considerably enhanced the predictive 
value above TMB or CRGPI alone (Figure 10f). Similar 

to TCGA (Figure 9d), the survival advantage of 
patients in the high CRGPI group was lower than that 
of the low CRGPI group for both high and low TMB 
groups (Log-rank test, P <0.001; Figure S12 f). ROC 
analyses of the CheckMate025, and GSE78220 cohorts 
also revealed that the CRGPI was a biomarker 
predictive of immunotherapeutic benefits (Figure 10l, 
p). Moreover, time-dependent ROC demonstrated 
that our CRGPI has a continuous prognostic 
advantage over TIDE, TIS scores, and TMB in TCGA 
dataset (Figure S12g) and other immunotherapy 
cohorts (Figure 10f, m, q). 

Taken together, our data demonstrate that 
CRGPI is linked with response to immunotherapy 
strategies (anti–PD-1/ PD-L1), patients in the CRGPI- 
low group may have a stronger immunotherapy 
response. 

Predicting chemotherapy and molecular drug 
sensitivity in patients with EC 

We examined the relationship between the 
CRGPI and sensitivity to chemotherapy and targeted 
therapy drugs in EC patients using the "pRRophetic" 
R package. Our results revealed that the estimated 
IC50 values of 59 different drugs differed significantly 
between the two CRGPI subgroups (all p < 0.01, Table 
S4). 17 drugs were more sensitive in the low CRGPI 
group than in the high group, including Mitomycin C, 
PARP inhibitor (ag-014699), 5-Fluorouracil, CDK 
inhibitor (Roscovitine), Bleomycin (Figure S13a); 42 
drugs were more sensitive in the high CRGPI group 
than in the low group, including p38 MAPK inhibitor 
(KIN001-266), tyrosine kinase inhibitor (Masitinib), 
EGFR antibody (Cetuximab, Gefitinib), JNK inhibitor 
(JNK-9L) (Figure S13b).These findings suggested that 
the CRGPI could be used to predict chemotherapy 
and targeted therapy. 

Discussion 
Endometrial cancer (EC) is the most common 

gynecologic malignancy in Western and Asian 
countries and a significant immunogenic cancer for 
which immune checkpoint inhibitors (ICIs) are 
clinically effective [34]. According to The Cancer 
Genome Atlas Network, a comprehensive genomic 
analysis of primary EC identified four distinct 



 Journal of Cancer 2023, Vol. 14 

 
https://www.jcancer.org 

3095 

molecular subgroups: "POLE ultramutated" (POLE), 
"hypermutated/microsatellite-unstable" (MSI-H), 
"copy number low/microsatellite-stable" (CN-L), and 
"copy number high" (CN-H) [35]. Among these 
subtypes, EC with the first two subtypes is highly 
immunogenic and caries a greater number of novel 
antigens, causing an increase in tumor-infiltrating 
lymphocytes and a compensatory upregulation of 
immune checkpoint molecules [34, 36]. Immuno-
therapy in EC has consequently received considerable 
attention. Immunotherapy, specifically ICIs, is the 
cutting-edge treatment for a number of solid 
malignancies, including gynecological cancers [37]. In 
2019, pembrolizumab and levatinib will be used to 
treat MS stable (MSS) diseases [38]. In 2017, 
pembrolizumab was used to treat MSI-H tumors. In 
2021, the European Medical Agency (EMA) also 
approved pembrolizumab, lenvatinib, and dostarli-
mab for pre-treatment EC patients and MSI-H EC 
patients, respectively. In light of the fact that the 
overall response rate to ICI treatment is still low [39], 
it is crucial to determine which patients stand to 
benefit the most from these treatments. Tsvetkov et al. 
[3] shed light on a new form of cell death, cuproptosis, 
which could provide a new avenue for anticancer 
treatments by fully exploiting copper's pathophysio-
logical role. In this study, we investigated the 
variation and expression of CRGs in EC, as well as 
their impact on patient prognosis. Analysis of 
single-cell RNA data revealed that the TCA pathways 
were significantly upregulated in malignant cells 
compared to normal cells, indicating that copper- 
induced cell death may play a role in tumorigenesis in 
EC and that tumor cells may progress via 
upregulation of cuproptosis activities. CDKN2A, 
PDHA1, GLS, DBT, and SLC31A1 were independent 
prognostic risk factors for EC patients. The 
preponderance of CRGs were maladjusted in EC 
patients. We identified two molecular subgroups of 
EC based on CRG datasets, and this was confirmed by 
a GEO dataset of uterine carcinosarcomas. Subtype A 
patients had more advanced clinicopathological 
characteristics and a worse overall survival rate than 
subtype B patients. In addition, the characteristics of 
the TME and immune activation varied considerably 
between the two subtypes. Based on the 
DEGs between the two subtypes, we identified two 
subtypes of genes. In addition, we demonstrated the 
predictive ability of the robust and effective 
prognostic CRGPI based on six DEGs. 

Comparison with the immunotyping construc-
ted by Thorsson et al. [32] provided additional 
confirmation that our CRGPI was related to 
immunity; therefore, to gain further insight into the 
immunological nature of the CRGPI subgroups, we 

screened the various CRGPI subgroups for mutations 
in genes where missense mutations were the most 
prevalent type. PTEN was more prevalent in the 
CRGPI-low group (85% vs. 39%), whereas TP53 was 
more prevalent in the CRGPI-high group (58% vs. 
17%). PTEN interacts with p53 to promote tumor 
progression [40], and not only is TP53 mutation the 
most common genetic event in cancer, but it is also 
associated with more aggressive and inferior clinical 
outcomes in a variety of cancers, including EC [41]. In 
addition, there were fewer PIK3CA mutations in the 
CRGPI-high group (41% vs. 57%), suggesting that 
CRGPI-high ECs promote carcinogenesis via the 
PI3K–PTEN–AKT signaling pathway [41].  

Next, we examine the relationship between 
CRGPI and HLA family genes and known predictive 
biomarkers for immunotherapy, such as immune 
checkpoint gene expression (PD1, PD-L1), TMB, 
MSI-H, and tumor-infiltrating lymphocyte (TIL) 
numbers [42, 43]. The ability of T lymphocytes to 
recognize neoantigens via HLA molecules on the 
surface of tumor cells permits the initiation of targeted 
and efficient anti-cancer immune responses [44]. Our 
results demonstrated that HLA genes' expres-
sion were significantly higher in the group with a low 
CRGPI. PD-1/PD-L1 status may impact the efficacy of 
ICI, and PD-L1-positive tumors tend to respond better 
to anti-PD-1/PD-L1 therapies than PD-L1-negative 
tumors in general [45]; however, this notion has not 
been confirmed in ECs, and relevant experimental 
studies are awaiting. In our CRGPI-low group, the 
expression of a number of immune checkpoint genes, 
including CTLA4, PDCD1, and others, was 
significantly higher than in our CRGPI-high group. 
Since malignancies with overexpression of 
immunosuppressive checkpoints are more susceptible 
to ICIs [46], this finding supports the hypothesis that 
ICIs are more effective in the CRGPI- low group. 
Moreover, according to our IPS results, the 
CRGPI-low group had a higher IPS. Therefore, the 
hypothesis of this investigation is that immuno-
therapy may benefit CRGPI-low patients. Moreover, 
TMB was recently evaluated in prospective clinical 
trials as a potential biomarker for predicting response 
to ICI therapy in solid tumors, including EC [33]; a 
high TMB level was significantly associated with a 
more effective response to ICI and enhanced survival 
[43]. High TMB is associated with a better prognosis 
for EC patients, which is consistent with the literature, 
suggesting that TMB may help explain why CRGPI is 
able to affect the immunotherapy prognosis of EC 
patients, although the complex mechanisms involved 
require further study. Mismatch repair 
deficiency/high microsatellite instability (dMMR/ 
MSI-H) tumors treated with ICB show a durable 
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response and sustained survival benefit, and the 
combination of ICB therapies could further enhance 
patient outcomes [43]. 25–30% of primary endometrial 
malignancies are MSI-H, whereas 13–30% of 
endometrial cancer recurrences are MSI-H or dMMR 
[34]. In our study, MSI-H patients with a lower CRGPI 
score had a more favorable prognosis, indicating that 
they also responded more favorably to 
immunotherapy. The mechanism by which tumors 
with high MSI and TMB respond better to PD-1 
inhibitor therapy may be that more mutated genes 
produce more tumor antigens, making the tumor 
more immunogenic and thus resulting in greater 
lymphocyte infiltration, and that hypermutated 
tumors may contain more tumor-specific neoantigens 
and a greater number of tumor-infiltrating lympho-
cytes (TILs) [42, 45, 47]. 

Understanding the condition of the TME can 
facilitate the discovery of novel therapeutics for ECs 
or the modification of the TME to improve 
immunotherapy's efficacy. TME is characterized by 
hypoxia, acidity, and malnutrition, which result from 
rapid tumor cell proliferation and inadequate 
angiogenesis; cancer cells respond to various 
detrimental tumor microenvironments by reprogram-
ming to maintain cancer cell proliferation and growth 
[48]. In EC, the TME contains a greater number of 
immune cells and cytokines than in other 
gynecological cancers [43]. All stromal, immune, and 
ESTIMATE scores were higher in the CRGPI-low 
group, indicating that CRGPI-low may be more 
immunogenic; the composition of certain immune 
cells is also distinct between the two groups. B cells 
naïve, dendritic cells activated, T cells CD4 memory 
resting, T cells follicular helper, as well as 
macrophages M1 were more prevalent in the 
CRGPI-high subgroup. In addition, the results of the 
ssGSEA algorithm indicated that patients in the 
CRGPI-low group have a higher level of immune 
activity. Numerous studies have shown that a 
concentrated infiltration of T cells, especially cytotoxic 
CD8 T cells, indicates a favorable prognosis [49, 50]. 
CD8+ counts are an independent factor associated 
with a favorable prognosis in patients with high- 
grade EC [51]. High dendritic cell density, 
tumor-associated B lymphocytes, and macrophages 
were associated with a poor prognosis [52]. These 
cells are associated with a poor prognosis in breast, 
bladder, ovarian, and prostate cancers. In contrast, a 
large density of M1 macrophages may indicate a 
favorable prognosis for ovarian or gastric cancer 
patients [49, 53]. Our findings correspond to these 
conclusions. The CRGPI-high group had more 
immunosuppressive cells and signals, whereas the 
CRGPI-low group had greater immune cell 

infiltration, higher TMB and MSI-H, and greater 
immune checkpoint gene expression, indicating that 
the CRGPI-low group was immune-active and more 
responsive to ICIs. In conjunction with other 
molecules and immune subtypes, CRGPI clustering 
could be used to identify distinct EC molecular and 
immune subtypes. ICI therapy benefits CRGPI-low 
patients more than CRGPI-high patients because 
CRGPI-low patients may have a stronger immune 
response to tumor initiation. CRGPI-based distinct-
ions in the TME may reflect distinct immune benefits 
of ICI therapy (anti-PD1 and anti-CTLA4) as 
identified by IPS. The low CRGPI group had higher 
IPS scores, indicating increased immunotherapy 
efficacy.  

To further validate the prognostic value and 
immunotherapeutic benefit prediction of the CRGPI, a 
survival analysis was undertaken on different 
immune-therapeutic cohorts receiving anti-PD-L1/ 
PD-1 therapy. We discovered that the CRGPI was able 
to differentiate various outcomes among patients 
treated with anti-PD-L1/PD-1 therapies in 
three independent external cohorts, with an improved 
prognosis in the CRGPI low group, further validating 
our CRGPI's strong predictive ability in ICI therapy. 
Moreover, CRGPI is an excellent predictor of 
immunotherapeutic response; individuals with a 
lower CRGPI may have a better immune-therapeutic 
response, especially to PD-L1 therapy. 

Certain biomarkers, including tumor immune 
dysfunction and exclusion (TIDE) [54] and TIS [23], 
have been reported to predict patient response to 
immunotherapy. Due to the fact that ECs are more 
immunogenic and nearly all TCGA patients had a 
responder phenotype in the TIDE score, which does 
not accurately reflect the situation, the TIDE score was 
not validated in this investigation. As a clinical 
analysis, TIS provides quantitative and qualitative 
information about the TME, which is comprised of the 
expression of 18 genes, such as genes reflecting 
sustained adaptive Th1 and cytotoxic CD8 T cell 
responses, and TIS has demonstrated promising 
results in predicting response to anti-PD-1/PD-L 
agents. TIS is preoccupied with the function and 
condition of T cells, which does not fully convey the 
complexity of TME participation in response to 
immunotherapy. In addition, TIS focuses on patient 
response to immunotherapy rather than patient 
survival time, as well as whether a positive prognosis 
for patient survival after receiving therapy can be 
predicted, which appears essential when selecting 
treatments. Moreover, the CRGPI consists of only six 
genes, making it much simpler to identify than TIS or 
other indicators (TMB, MSI, etc.), which has 
significant health economic benefits. 
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Despite this, there are several drawbacks to this 
research. First, this study only considered genes 
associated with cuproptosis and disregarded other 
immune-related biomarkers. Second, the number of 
immune cells varies greatly between individuals, and 
it is challenging to ascertain whether gene expression 
levels are primarily dependent on the type of immune 
cell. Furthermore, this research is based on online 
data, and large clinical sample studies are still 
necessary to validate the predictive value of the 
CRGPI model. 

CRGPI is a promising cuproptosis-related 
prognostic biomarker in EC, in conclusion. CRGPI 
grouping aids in differentiating immune and 
molecular signatures, predicts patient prognosis, and 
may be a potential prognostic indicator for immuno-
therapy; however, more research is necessary to 
elucidate this. 
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