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Abstract 

The tumor immune microenvironment in clear cell Renal Cell Carcinoma (ccRCC) still remains poorly 
understood. Previous methods to study the tumor immune microenvironment have a limitation when 
accounting for the functionally distinct cell types. In this study, we investigated the differently infiltrated immune 
cells and their clinical significance in ccRCC for the purpose of shedding some important light on the complex 
immune microenvironment in ccRCC. The devolution algorithm (CIBERSORT) was applied to infer the 
proportion of 22 immune infiltrating cells based on gene expression profiles of ccRCC bulk tissue, which were 
downloaded from TCGA and GEO databases. As a result, we observed considerable differences in immune 
cells percentage between ccRCC tumor tissue and paired normal tissue; meanwhile, we uncovered their 
internal correlations and associations with Fuhrman grade. Moreover, dendritic cells resting, dendritic cells 
activated, mast cells resting, mast cells activated and eosinophils were associated with favorable prognosis, 
whereas B cells memory, T cells follicular helper and T cells regulatory (Tregs) were correlated with poorer 
outcome. 

Key words: devolution algorithm, tumor microenvionment, clear cell renal cell carcinoma (ccRCC), genomic 
signature 

Introduction 
Clear cell Renal Cell Carcinoma (ccRCC) is the 

most common histology identified in renal carcinoma. 
Its manifestations are different both biologically and 
in clinic [1,2]. The cancer genome changes based on 
large scale sequencing researches contributed greatly 
to our understanding of underlying molecular 
mechanism of ccRCC [3,4]. Notably, a solid tumor is 
not only composed of cancer cells, but also by 
non-cancer cells, which can profoundly influence 
tumor progression in an elaborate and dynamic 
manner [5]. Among these non-cancer cells, the tumor 
infiltrating immune cells (TIICs) exert a central role in 
pro- and anti-tumorigenic processes; moreover, they 
have been found closely correlated with the clinical 

outcome and response to immunotherapy [6]. 
Compared to other carcinomas, the roles of immune 
cells recruited to microenvironment in ccRCC have 
not yet been elucidated and still remain an enigma, 
especially regarding the contradictory correlation of 
high CD8+ T cell infiltration with poor prognosis 
[7,8]. 

Previous traditional research techniques to 
evaluate TIICs include immunohistochemistry and 
flow cytometry, both of which inevitably are limited 
to a narrow viewpoint when analyzing the 
composition of immune cells comprehensively. 
Additionally, with the demanding sample processing, 
flow cytometry may result in cytolysis of certain cell 
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types [9,10]. However, the immune response in a 
tumor involves in plenty of specialized cell types [11]. 
To better understand the diversity and nature of 
infiltrating immune cells in ccRCC, it is a pre-requisite 
to enumerate the number of immune cells in an 
aggregative manner. CIBERSORT, a versatile gene 
expression-based devolution algorithm, can quantify 
cell fractions from gene expression profiles of bulk 
tissue [12]. Therefore, the different types of infiltrating 
immune cells can be quantified simultaneously, 
allowing this method to obviate the concern of 
various surface markers and possible cellular 
dissociation. Due to its superiority, we used 
CIBERSORT in this study to enumerate 22 distinct 
functional immune cell types in ccRCC to define the 
landscape of ccRCC tumor tissue and paired normal 
tissue; more importantly, we investigated its 
relationship with other immune cells, survival and 
pathological grade. We hoped this study will provide 
some important information regarding the complex 
immune microenvironment in ccRCC and help to 
reveal new therapeutic targets. 

Materials and methods 
Data collection 

This study made use of data from public 
datasets. Gene expression profiles and corresponding 
clinical information from primary ccRCC tumors, 

uploaded up to the 31st December 2018, were 
downloaded from Gene Expression Omnibus (GEO) 
and The Cancer Genome Atlas (TCGA) [13,14]. 
Duplicates and datasets with small sample sizes (N < 
50) in GEO database were excluded. For TCGA 
datasets, preprocessing and aggregation of raw data 
were achieved by means of a robust multi-array 
average algorithm. Furthermore, voom (variance 
modelling at the observational level) was used to 
transform RNA sequencing data to values that are 
more similar to those from microarrays [15]. 
Furthermore, gene probe names must be transformed 
into gene names based on platform annotation flies 
for GEO datasets. Subsequently, we organized each 
sample and corresponding clinical data for further 
analysis; moreover, we manually identified and 
picked out tumor tissue and paired normal tissue to 
screen differentially infiltrated immune cells to 
investigate whether there is a difference in the 
infiltrated immune cells between different tissues. The 
overall study design and the different samples that 
were included at every stage of the analysis are 
illustrated as a flowchart in Figure 1.  

Enumeration of tumor infiltrating immune 
cells 

CIBERSORT is a robust analytic tool that uses 
gene expression signatures consisting of 547 genes. It 
characterizes each immune cell subtype and 

 

 
Figure 1. Flowchart detailing the overall study design and samples at each stage of analysis. 
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accurately quantifies distinct immune cell 
compositions using a deconvolution algorithm. The 
derived P-value reflects the statistical significance of 
deconvolution results and can help filter out samples 
with less significant accuracy.  

Before running CIBERSORT, the original gene 
expression data downloaded from TCGA and GEO 
must be normalized as Binbin Chen et al. described 
previously [16]. Then, the data was uploaded to the 
CIBERSORT web portal (http://cibersort.stanford. 
edu) with a number of permutations being set to 100. 
Relative proportions of 22 infiltrating immune cells 
together with CIBERSORT metrics of CIBERSORT 
P-value, Pearson correlation coefficient and root mean 
squared error (RMSE) were evaluated for each sample 
simultaneously.  

Statistical analysis  
Only samples with a CIBERSORT P-value < 0.05 

were regarded as statistically significant and included 
in further analysis. Correlations between different 
immune cell subtypes were established using the 
Pearson correlation coefficient. Associations between 
categorical and continuous variables were tested 
using the Kruskal-Wallis or Wilcoxon test. Survival 
analysis of specific immune cell subtype was 
conducted according to the median of the proportion 
of immune cell. Log-rank Mantel-Cox regression was 
applied to compare the survival curves between 
groups of patients using the Graphpad Prism 7.0 
software. Additionally, multivariable analysis was 
adjusted according to age, gender, histological grade, 
T stage, lymph node metastasis, distant metastasis, 
and TNM stage using SPSS 24.0. 

All analyses were conducted by R version 3.5.2 
and all statistical tests performed were two-sided. A 
P-value < 0.05 was considered as statistically 
significant. 

Results 
The landscape of immune infiltration in ccRCC 

We first revealed the landscape of 22 immune 
cell subpopulations infiltration in ccRCC, and 
subsequently we investigated the difference between 
tumor tissue and paired normal tissue using the 
CIBERSORT algorithm. Detailed results are presented 
in Table 1. The fraction of immune cells varied 
distinctly between groups (Figure 2A, 2B). Compared 
with paired normal tumor tissue, ccRCC tissue 
contained a greater number of T cells CD8+, T cells 
follicular helper, T cells regulator (Tregs), 
Macrophages M0, Macrophages M1 and neutrophils. 
However, B cells naive, T cells CD4 naive, T cells CD4 
memory resting, monocytes, dendritic cells resting 
and mast cells resting fractions were relative lower 

(Figure 3A). The proportions of 22 TIICs were 
weakly-to-strongly correlated in tumor. T cells CD8+ 
and T cells follicular helper showed the strongest 
positive correlation (Pearson correlation = 0.54), while 
T cells CD8+ and T cells CD4+ memory resting 
showed the strongest negative correlation (Pearson 
correlation = 0.73); moreover, T cells CD8+ also 
indicated moderate negative correlation with 
Macrophages M2 (Pearson correlation = 0.56) (Figure 
3B). Altogether, these results revealed that the 
immune response of ccRCC acted as an intricate 
network and proceeded in a tightly regulated way. 

 

Table 1. Comparison of 22 TIICs proportion between ccRCC 
and paired normal tissue 

Cell type CIBERSORT fraction in % of all infiltrating immune cells 
(mean± SD) 
Paired normal tissue Tumor tissue  

B cells naive  0.035 ± 0.037  0.009 ± 0.015  0.009  
B cells memory  0.012 ± 0.028 0.005± 0.010 0.616 
T cells CD8 0.054 ± 0.048 0.148 ± 0.126 0.005 
T cells CD4 naive  0.014 ± 0.029 0.000 ± 0.000 0.020 
T cells CD4 memory 
resting 

0.256 ± 0.091 0.137 ± 0.096 <0.001 

T cells CD4 memory 
activated  

0.008 ± 0.011 0.006 ± 0.013 0.444 

T cells follicular helper 0.011 ± 0.022 0.024 ± 0.024 0.004 
T cells regulatory (Tregs)  0.002 ± 0.007 0.018 ± 0.019 <0.001 
T cells gamma delta 0.048 ± 0.055 0.069 ± 0.061 0.236 
NK cells resting 0.003 ± 0.007 0.014 ± 0.024 0.114 
NK cells activated 0.017 ± 0.017 0.023 ± 0.003 0.841 
Monocytes  0.089 ± 0.075 0.056 ± 0.078 0.029 
Macrophages M0 0.012 ± 0.036 0.052 ± 0.077 0.006 
Macrophages M1 0.060 ± 0.027 0.088 ± 0.044 0.024 
Macrophages M2 0.175 ± 0.056 0.209 ± 0.079 0.091 
Dendritic cells resting 0.044 ± 0.044 0.010 ± 0.015 0.001 
Dendritic cells activated 0.003 ± 0.008 0.006 ± 0.016 0.681 
Mast cells resting  0.080 ± 0.055 0.051 ± 0.076 0.003 
Mast cells activated  0.004 ± 0.009 0.007 ± 0.018 0.680 
Plasma cells  0.059 ± 0.057 0.034 ± 0.042 0.116 
Eosinophils  0.004 ± 0.009 0.002 ± 0.006 0.438 
Neutrophils 0.009 ± 0.016 0.031 ± 0.037 0.019 

Significance of bold values are p < 0.05. 
 

Identification of clinical implications of TIICs 
subsets  

Owning to the missing survival data in included 
GEO datasets, we investigated whether there was a 
statistical relationship between specific TIICs and 
ccRCC overall survival obtained from TCGA by 
univariate Cox regression through Graphpad 
Prism7.0. After a restriction of CIBERSORT filter to P 
< 0.05, there were 418 patients with available data on 
overall survival (142 events). The detailed 95% 
confidence intervals, unadjusted HRs and P-value for 
the median fractions of TIICs subtypes are presented 
in Table 2. Dendritic cells resting ([HR] = 0.656; 95% 
CI = 0.471-0.913; P=0.013 ), dendritic cells activated 
(hazard ratio [HR] = 0.617; 95% CI = 0.443-0.858; 
P=0.004 ), mast cells resting ([HR] = 0.647; 95% CI = 
0.465-0.900; P=0.010 ), mast cells activated ([HR] = 
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0.690; 95% CI = 0.496-0.091; P=0.028 ) and eosinophils 
([HR] = 0.728; 95% CI = 0.516-0.999; P=0.049 ) were 
significantly associated with a favorable outcome. In 
contrast, B cells memory ([HR] = 1.437; 95% CI = 
1.028-2.008; P=0.034 ), T cells follicular helper ([HR] = 
1.485; 95% CI = 1.067-2.067; P=0.019 ) and T cells 
regulatory (Tregs) ([HR] = 1.621; 95% CI = 1.165-2.256; 
P=0.004 ) were associated with poorer outcome. The 
corresponding Kaplan-Meier curve and Log-rank test 
are depicted in Figure 4. Among those TIICs subtypes 
associated with overall survival, we evaluated their 
possibility of becoming independent prognostic factor 
using multivariable analysis adjusted for known 
prognostic factors. However, none represented an 
independent prognostic factor besides T stage 
(T1-T2/T3-T4), lymph node metastasis (N0/N1-N2), 
distant metastasis (M0/M1) and TNM stage.  

Moreover, we first revealed the association 
between different immune cell subsets and ccRCC 
pathological grade by combing the clinical 
characteristics of TCGA and GEO databases. Result 
showed that the fraction of dendritic cells resting, 
mast cells resting, monocytes, T cells CD4+ memory 
resting decreased with the increasing Fuhrman grade, 
whereas the fraction of T cells CD8+, T cells follicular 
helper, T cells regulatory (Tregs) and Macrophages 

M0 increased with the elevated Fuhrman grade 
(Figure 5; Supplementary Table 1). 

 

Table 2. Prognostic associations of 22 TIICs subpopulation 

Tumor infiltrating immune cells Hazard Ratio 95% CI of ratio P-value 
T cells CD4 naive  — — — 
Dendritic cells activated 0.617 [ 0.443 ; 0.858 ] 0.004 
Mast cells resting  0.647 [ 0.465 ; 0.900 ] 0.010 
Dendritic cells resting 0.656 [ 0.471 ; 0.913 ] 0.013 
Mast cells activated  0.690 [ 0.496 ; 0.091 ] 0.028 
Monocytes  0.725 [ 0.521 ; 1.008 ] 0.056 
Eosinophils  0.728 [ 0.516 ; 0.999 ] 0.049 
Macrophages M2 0.765 [ 0.550 ; 1.064 ] 0.112 
T cells CD4 memory resting 0.888 [ 0.638 ; 1.236 ] 0.481 
Neutrophils 0.917 [ 0.659 ; 1.276 ] 0.607 
NK cells activated 0.934 [ 0.673 ; 1.303 ] 0.698 
T cells CD8  0.973 [ 0.699 ; 1.354 ] 0.870 
T cells gamma delta 0.983 [ 0.706 ; 1.369 ] 0.918 
B cells naive  1.065 [ 0.765 ; 1.482 ] 0.708 
Plasma cells  1.170 [ 0.841 ; 1.628 ] 0.352 
NK cells resting 1.186 [ 0.851 ; 1.655 ] 0.314 
Macrophages M0 1.198 [ 0.860 ; 1.667 ] 0.085 
Macrophages M1 1.226 [ 0.881 ; 1.707 ] 0.226 
T cells CD4 memory activated  1.337 [ 0.960 ; 1.862 ] 0.086 
B cells memory  1.437 [ 1.028 ; 2.008 ] 0.034 
T cells follicular helper 1.485 [ 1.067 ; 2.067 ] 0.019 
T cells regulatory (Tregs)  1.621 [ 1.165 ; 2.256 ] 0.004 

Significance of bold values are p < 0.05. 
 

 
 

 
Figure 2. The landscape of immune infiltration in ccRCC and difference of immune infiltration between paired normal tissue and tumor tissue in ccRCC. A. Paired normal tissue; 
B. Tumor tissue. 
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Figure 3. A. Violin plot visualizing the differentially infiltrated immune cells; B. Correlation heatmap depicting correlations between infiltrated immune cells in tumor; C. Heat 
map of the 22 immune cell proportions.  
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Figure 4. Survival plots of median of immune cell subpopulations with P-value < 0.05. 

 
Figure 5. Correlation of specific immune cell proportions with Fuhrman grade in ccRCC.  

 

Discussion 
The tumor microenvironment, which comprises 

malignant tumor cells, various infiltrating immune 
cells, fibroblasts and numerous cytokines and 
chemokines, is well recognized as a complex 
biological process like an intricate and dynamic 
ecosystem. Among this ecosystem, immune response 
plays an important role in tumor growth, invasion 
and metastasis; therefore, it is treated as another 

therapeutic target beyond chemotherapy and 
radiation [11]. However, despite the astounding 
clinical successes in multiple tumor types, many more 
patients experienced minimal or no clinical response 
to the same immunotherapeutic intervention [17]. 
Until recently, the roles of TIICs have not been fully 
understood. Hence it is of vital importance to figure 
out the diversity and complexity of the tumor 
immune context to predict and guide 
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immunotherapy, as well as to reveal novel biomarkers 
and targets for therapeutic modulation.  

With the advances in computational methods, a 
deconvolution algorithm called CIBERSORT was 
developed, which could infer the proportions of 22 
TIICs subpopulations from tumor transcriptomes. 
This method was validated by FACS successfully and 
was conducted in breast cancer, and lung cancer 
patients [18,19]. In this study, we applied CIBERSORT 
to uncover distinct patterns of TIICs in ccRCC and 
associations of different immune cells subsets with 
clinical outcomes.  

We observed significant differences in immune 
cell composition between ccRCC tumor tissue and 
paired normal tissue. Our data revealed the detailed 
profile of 22 TIICs subtypes infiltration in ccRCC that 
the proportions of total T cells accounted for more 
than 40%, in which the CD8+ T cells comprised of 
14.8%. Secondly, the proportions of total macrophages 
accounted for more than 30%, in which 20.9% were 
M2 cells. Moreover, our work confirmed the findings 
that certain immune cells subsets can also predict 
clinical outcomes beyond the immunoscore. By 
univariate Cox regression analysis, we found that 
dendritic cells resting, dendritic cells activated, mast 
cells resting, mast cells activated and eosinophils are 
significantly associated with improved outcome, 
while B cells memory, T cells follicular helper and T 
cells regulatory (Tregs) indicate poorer outcome.  

It is commonly believed that CD8+ T cells can 
recognize tumor specific antigens and play a role in 
tumor control [20]. High densities of tumor infiltrated 
CD8+ T cells are shown to be associated with 
favorable prognosis in vast majority of cancers [5]; 
therefore, many forms of immunotherapy aim at 
restoring T-cell mediated immune response [17]. 
Previous studies described ccRCC as a pro- 
inflammatory tumor where malignant cells and 
infiltrated neutrophils produce various kinds of 
cytokines that may help recruit and activate 
polyclonal CD8+ T cells [21-23]. Paradoxically, CD8+ 
T cells infiltration in ccRCC correlates with a poorer 
prognosis. Nicolas A. Giraldo et al. revealed that 
recruited CD8+ T cells correlated with favorable 
prognosis only with the present of fully functional 
mature dendritic cells (DC) [7]. Moreover, several 
studies indicated that dysfunctional DC maturation 
can be induced in the ccRCC microenvironment by 
down-regulating co-stimulatory molecules [24-26]. 
Recently, Kondou R et al. discovered that in PD-L1+ 
and CD8B+ patients, the gene expression profiling of 
fresh specimens exhibited an upregulation of 
dendritic cell maturation genes and T-cell activation 
genes. However, patients with PD-L1- and CD8B- 
exhibited a low expression of T-cell-activation genes 

[27]. Meanwhile, our results demonstrated that 
dendritic resting cells and dendritic activated cells are 
associated with favorable prognosis. These results 
revealed that malfunction of DC might involve in the 
process of T cells inhibition and become a potential 
combined therapeutic target.  

Furthermore, research in human lung and 
colorectal cancer showed that CD8+ T cells are not 
only specific for tumor-derived antigens; but also 
recognize a variety of epitopes unrelated to cancer 
[28]. They demonstrated that abundant CD8+ T cells 
act as bystanders and are phenotypically 
heterogeneous within a tumor and across patients. 
From this perspective, the role of CD8+ T cells level in 
predicting prognosis differs between patients. 
Collectively, these explain the possible reasons for the 
correlation of CD8+ T cells infiltration with poor 
outcome. In our study, however, we did not find 
association between CD8+ T cells and overall 
survival; besides, the percentages of neutrophils in the 
entire TIICs was uncorrelated with clinical outcome, 
but Jensen HK et al. revealed that the presence of 
intramural neutrophils correlates with poor prognosis 
[29]. The discrepancy may be ascribed to the nature of 
algorithm, which lack information related to cellular 
heterogeneity and deeper spatial distribution.  

Previous studies regarding regulatory T cells 
and Macrophages M2 showed that they all exert 
pro-tumorigenic function [30,31]. Our study revealed 
that T cells regulatory and T cells follicular helper are 
associated with poor prognosis. Interestingly, we also 
found the positive relationship between specific 
immune cells proportion and ccRCC Fuhrman grade 
including CD8+ T cells, T cells regulatory and T cells 
follicular helper. Moreover, corHeatmap indicated 
negative correlation between CD8+ T cells and 
Macrophages M2. Collectively, our work indicated 
that Macrophages M2, T cells regulatory and T cells 
follicular helper possibly play a role in T cell 
exhaustion/inhibition in an intricated “checks and 
balances” mannner [32].  

Mast cells and eosinophils have been studied 
mainly in the allergic disease. It has been reported 
that mast cells and eosinophils can exhibit both tumor 
promoting and anti-tumor activity [33,34]. 
Underlying molecular mechanisms of the 
contradictory function have remained a conundrum. 
Increased mast cell infiltration predicts a poorer 
prognosis in many cancers including lung, colorectal, 
gastric, melanoma and cervical carcinoma [35]; 
nevertheless, mast cell infiltration is associated with 
improved prognosis for breast carcinoma and 
prostate cancer [36,37]. Our study revealed that 
infiltration of resting mast cells, activated mast cells 
and eosinophils are correlated with favorable 
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prognosis in ccRCC. However, the fraction of resting 
mast cells decreased with the increased Fuhrman 
grade. With the merits of a low rate of cell division 
and long lifespan, mast cells are eligible alternative 
candidates for combined targeted immunotherapy. 
Moreover, Hollande et al. first demonstrated that 
using T cell- and eosinophils-targeted combination 
therapy yields increased tumor retardation, which 
advances our understanding of the anti-tumor role of 
eosinophils [38]. 

Nevertheless, our study has several limitations. 
We pooled together data from TCGA and GEO to 
enlarge our sample size, which may affect the 
repeatability of results on account of the 
heterogeneity. Secondly, our results are based on 
public database and computational algorithm. 
Although the accuracy of this technique has been 
testified using FACS, it is still required to further 
verify them by experiments in the future. 

In conclusion, our analysis, based on a 
devolution algorithm, revealed significant differences 
in the cellular composition of infiltrated immune cells 
in ccRCC and associations between 22 immune cells 
subpopulations and clinical outcome. Particularly, 
DC, mast cells, eosinophils, T cells regulatory and T 
cells follicular helper emerge as potential 
immunotherapy targets. Moreover, the CIBERSORT 
algorithm makes the comprehensive analysis of 
ccRCC immune microenvironment possible by using 
gene expression data from bulk tissues.  

Supplementary Material  
Supplementary table.  
http://www.jcancer.org/v11p3207s1.pdf  
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