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Abstract 

Objectives: Lung adenocarcinoma (LUAD) accounts for a majority of cancer-related deaths worldwide 
annually. The identification of prognostic biomarkers and prediction of prognosis for LUAD patients is 
necessary. 
Materials and Methods: In this study, LUAD RNA-Seq data and clinical data from the Cancer Genome 
Atlas (TCGA) were divided into TCGA cohort I (n = 338) and II (n = 168). The cohort I was used for 
model construction, and the cohort II and data from Gene Expression Omnibus (GSE72094 cohort, n = 
393; GSE11969 cohort, n = 149) were utilized for validation. First, the survival-related seed genes were 
selected from the cohort I using the machine learning model (random survival forest, RSF), and then in 
order to improve prediction accuracy, the forward selection model was utilized to identify the 
prognosis-related key genes among the seed genes using the clinically-integrated RNA-Seq data. Second, 
the survival risk score system was constructed by using these key genes in the cohort II, the GSE72094 
cohort and the GSE11969 cohort, and the evaluation metrics such as HR, p value and C-index were 
calculated to validate the proposed method. Third, the developed approach was compared with the 
previous five prediction models. Finally, bioinformatics analyses (pathway, heatmap, protein-gene 
interaction network) have been applied to the identified seed genes and key genes. 
Results and Conclusion: Based on the RSF model and clinically-integrated RNA-Seq data, we identified 
sixteen key genes that formed the prognostic gene expression signature. These sixteen key genes could 
achieve a strong power for prognostic prediction of LUAD patients in cohort II (HR = 3.80, p = 1.63e-06, 
C-index = 0.656), and were further validated in the GSE72094 cohort (HR = 4.12, p = 1.34e-10, C-index 
= 0.672) and GSE11969 cohort (HR = 3.87, p = 6.81e-07, C-index = 0.670). The experimental results of 
three independent validation cohorts showed that compared with the traditional Cox model and the use 
of standalone RNA-Seq data, the machine-learning-based method effectively improved the prediction 
accuracy of LUAD prognosis, and the derived model was also superior to the other five existing 
prediction models. KEGG pathway analysis found eleven of the sixteen genes were associated with 
Nicotine addiction. Thirteen of the sixteen genes were reported for the first time as the LUAD 
prognosis-related key genes. In conclusion, we developed a sixteen-gene prognostic marker for LUAD, 
which may provide a powerful prognostic tool for precision oncology. 

Key words: Lung adenocarcinoma; Prognosis prediction; RNA-Seq data; Random survival forest; Forward 
selection model 

Introduction 
Lung cancer is the leading cause of cancer death 

worldwide, and approximately 1 million people die of 
this disease each year [1-3]. Lung adenocarcinoma 
(LUAD) is the most common histological subtype of 

lung cancer, and the incidence and mortality are 
increasing [4-6]. The average 5-year survival rate for 
LUAD patients is only 15%, although progress has 
been made in treatment, such as combination of 
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chemotherapy and chemoradiation, survival rate has 
been improved very little over the past a few decades 
[7-9]. Therefore, it is particularly important to find 
prognostic markers for LUAD and provide precise 
targeted therapy. 

With the development of high-throughput 
sequencing techniques to interrogate genome-wide 
genetic variations, RNA-Seq based markers have 
recently been studied as prognostic markers for lung 
cancer [10, 11]. Sudbanshu Shukla et al. undertook the 
first prognostic analysis of LUAD RNA-Seq data and 
generated the prognostic feature using the Cox model, 
which can provide a powerful prognostic tool for 
precision oncology as part of an integrated RNA-Seq 
clinical sequencing program [5]. Subsequently, Li B et 
al. used the RNA-Seq dataset to develop a robust, 
individualized clinical immune signature that can 
assess the prognosis and overall survival in patients 
with early-stage nonsquamous non-small cell lung 
cancer [12]. As a subset of RNA-Seq, certain long 
non-coding RNAs (lncRNAs) also encode proteins 
and play crucial roles in gene transcription and 
regulation [13, 14]. Zheng S et al. used the Cox model 
to develop an 8-lncRNA prognostic signature in 
LUAD patients, which provided an effective 
independent prognostic prediction model for LUAD 
patients [15]. These studies were based solely on 
RNA-Seq data. Yuan Yuan et al. used molecular data 
in combination with clinical variables to predict the 
survival of four cancer types, the results showed that 
the comprehensive model had little predictive power 
for lung squamous cell carcinoma (LUSC), while the 
predictive power of the other three kinds of cancers 
(kidney renal clear cell carcinoma, glioblastoma 
multiforme, ovarian serous cystadenocarcinoma) 
were significantly improved [16]. 

Broadly defined, machine learning is a branch of 
computer science that deals with making predictions 
from complex data through statistical models and is 
widely applied in the biomedical field [17, 18]. As an 
efficient machine learning algorithm, RSF is 
considered as a more powerful method for survival 
analysis [19, 20]. In the present study, the 
high-throughput RNA-Seq data and clinical data were 
downloaded from the TCGA database, the Cox model 
and the RSF model were used to identify the 
survival-related seed genes from the TCGA cohort I, 
and then the forward selection model was generated 
and the prognosis-related key genes were identified. 
Finally, based on the RSF model and the 
clinically-integrated RNA-Seq data, we obtained a 
subset of sixteen genes that formed the prognostic 
gene expression signature and improved the power 
for predicting the prognosis of LUAD patients. 

Materials and Methods 
Data collection and preprocessing 

The RNA-Seq data and the corresponding 
clinical information for LUAD were downloaded 
from the publicly available TCGA database. After 
filtering out the missing data, a total of 506 LUAD 
patients were kept as our study samples. The 506 
LUAD patients were further randomly assigned to a 
training cohort (TCGA cohort I, n = 338) and an 
internal validation cohort (TCGA cohort II, n = 168). 
Moreover, the other two external validation cohorts 
consisting of 393 and 149 LUAD patients were 
downloaded from the GEO database (GSE72094 
cohort, GSE11969 cohort). In the RNA-Seq dataset for 
the above four cohorts, the numerical distribution of 
Reads per Kilo-base per Million mapped (RPKM) 
reads are too wide to be used in model analysis, thus 
we formulated each RPKM value in log2(X + 1) , 
where X is the RPKM value [21]. 

Machine learning model: random survival 
forest 

Random survival forest (RSF) is an adaptation of 
random forests (RF) designed to be used for survival 
data [22]. The mathematical principle of the RSF 
model is introduced as follows: bootstrap methods are 
used to randomly extract the ntree bootstrap samples 
from the raw data and create a binary recursive 
survival tree for each sample. In the experiment, the 
good division was determined by the log-rank 
splitting rule to maximize the survival difference 
between the daughter nodes [23]. The Cumulative 
Hazard Function (CHF) gives the values of the 
terminal nodes associated with time. For a terminal 
node h of a survival tree n at time t, this is given by the 
Nelson-Aalen estimator: 

𝑁𝑁𝑛𝑛,ℎ(𝑡𝑡) = ∑𝑡𝑡𝑙𝑙,ℎ≤𝑑𝑑𝑙𝑙,ℎ/𝑆𝑆𝑙𝑙,ℎ 

Among them, 𝑑𝑑𝑙𝑙,ℎ  represents the number of 
deaths, 𝑆𝑆𝑙𝑙,ℎ indicates individuals at risk, 𝑡𝑡𝑙𝑙,ℎ indicates 
distinct time events. All cases of ℎ are assigned the 
same CHF. In order to calculate the ensemble CHF of 
the survival forest of ntree trees with a given 
d-dimensional case 𝑥𝑥𝑖𝑖, 

𝐻𝐻𝑒𝑒𝑠𝑠(𝑡𝑡, 𝑥𝑥𝑖𝑖) = 1/𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛∑𝑛𝑛=1
𝑛𝑛𝑡𝑡𝑛𝑛𝑒𝑒𝑒𝑒∑ℎ∈𝑇𝑇(𝑛𝑛)𝐻𝐻𝑛𝑛,ℎ

𝑠𝑠 (𝑡𝑡, 𝑥𝑥𝑖𝑖) 

Where 𝐻𝐻𝑛𝑛,ℎ
𝑠𝑠 (𝑡𝑡, 𝑥𝑥𝑖𝑖)  is equal to the Nelson-Aalen 

estimator, if 𝑥𝑥𝑖𝑖 ends with the survival tree falling to h 
[24], 

𝐻𝐻𝑛𝑛,ℎ
𝑠𝑠 (𝑡𝑡, 𝑥𝑥𝑖𝑖) = �𝑁𝑁𝑛𝑛,ℎ(𝑡𝑡) 𝑥𝑥𝑖𝑖 ∈ ℎ

 0 𝑜𝑜𝑡𝑡ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛
 

The RSF model provides a unified treatment of 
Breiman’s RF [25] for a variety of data settings, such 
as survival, regression, classification and so on. 
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Survival is grown for right-censored survival data. 
Survival settings require a time and censoring 
variable which should be identified as the response in 
the Surv function for the “randomForestSRC” R 
package (http://www.r-project.org) [26]. The 
censoring variable must be coded as a non-negative 
integer with 0 reserved for censor and 1 reserved for 
death. Furthermore, this model generates a random 
forest using the training data, and the function 
var.select implements random forest variable selection 
using tree minimal depth methodology [25, 27]. 

Survival-related seed genes generation 
The association between genes and patients' 

overall survival was analyzed in the TCGA cohort I. 
The survival-related seed genes were screened and 
identified from all the genes using the following two 
models. 

All the genes among the TCGA cohort I were 
included in the Cox univariate survival analysis by 
the “survival” R package, the genes with expressing 
significance p values less than 0.05 were extracted as 
the first group of survival-related seed genes. The Cox 
model is a traditional method in the biostatistical 
field. In addition, the RSF model in machine learning 
field was used to select the second group of 
survival-related seed genes from all the genes among 
the TCGA cohort I again, which was built by the 
“randomForestSRC” R package [26]. 

To search the key pathways that were associated 
with LUAD survival, we next performed the KEGG 
pathway enrichment analysis for the two sets of 
survival-related seed genes by using the Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID) [28, 29]. 

Prognosis-related key genes selection 
The seed genes in primary selection were not 

suitable for clinical diagnosis [21]. To increase the 
feasibility and reliability of clinical prognosis based 
on gene, the forward selection model was used to 
select the prognosis-related key genes from seed 
genes. We implemented prognosis-related key genes 
selection by the “rbsurv” R package [30-32]. The 
procedure was as followings: 

(I) All the samples of the TCGA cohort I were 
randomly divided into 2/3 training set and 1/3 
validation set. A gene was fitted into the training set 
and the parameter estimate 𝛽𝛽𝚤𝚤0�  of this gene was 
obtained. Then the parameter estimate 𝛽𝛽𝚤𝚤0�  and the 
validation set were used to calculate the 
log-likelihood. This evaluation was carried out for 
each gene. 

(II) The above procedure was repeated n times, 
and each gene obtained n log-likelihoods. The gene 
with the largest mean log-likelihood was selected as 
the top gene and labeled g (1). Subsequently, we 
searched the next top two genes by evaluating every 
two-gene model and selected an optimal one with the 
largest mean log-likelihood. 

(III) We continued this forward gene selection 
procedure and eventually generated a series of 
models. In order to prevent overfitting, the akaike 
information criterion (AIC) was used to evaluate these 
modes, rather than log-likelihood. Finally, the best 
model with minimum AIC was selected. 

(IV) Risk factors were included in the model. 
Then steps II-IV were repeated. 

Verification and comparison of key genes 
In order to comprehensively investigate the 

association between these key genes and the 
prognosis of LUAD, we developed the survival risk 
score systems using the TCGA cohort II, the GSE72094 
cohort and the GSE11969 cohort. The risk scores were 
calculated by taking into account both the expression 
data of these prognosis-related key genes and 
correlation coefficients. Then the patients of the TCGA 
cohort II, the GSE72094 cohort and the GSE11969 
cohort were divided into two groups separately at 
high- and low-risk using the 50th percentile of risk 
score [33]. The KM survival curves were used to 
assess the efficacy of key genes in the three groups. 
We then calculated the concordance index (C-index) 
using function rcorr.cens in the R “Hmisc” package 
[34]. In addition, previous studies used various 
methods (such as decision trees, risk scoring, 
semi-supervised, and various online tools) to obtain 
prognostic genetic features of lung cancer or 
non-small cell lung cancer [5, 35-38]. We compared 
the sixteen-gene prognostic signatures to the five 
published lung cancer prognostic signatures by 
rederiving a multivariable Cox model using the gene 
list from each signature. 

Results 
The overall flowchart of this work was 

summarized in Fig. 1A. Firstly, the Cox model and the 
RSF model were used to screen each one group of 
survival-related seed genes from all the genes in the 
TCGA cohort I, and then the forward selection model 
employed the seed genes or the clinically-integrated 
seed genes to select four sets of prognosis-related key 
genes. Finally, the TCGA cohort II, the GSE72094 
cohort and the GSE11969 cohort were used to verify 
the performance of the four sets of prognosis-related 
key genes. 
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Figure 1: Identification of prognostic gene signature. A) Flowchart of RNA-Seq analysis and signature generation. Briefly, survival-related seed genes of the 506 TCGA LUAD 
patients were first identified by the Cox model and the machine learning model (random survival forest, RSF) from the TCGA cohort I. Next the forward selection model was 
used to select four sets of key genes for prognosis prediction. The survival risk score systems were built based on the expression data of gene signatures in the TCGA cohort 
II and the GSE72094 cohort and the GSE11969 cohort, which divided patients into high- and low-risk groups. B) KEGG enrichment pathway analysis of 5376 survival-related seed 
genes obtained by the Cox model. C) KEGG enrichment pathway analysis of 1113 survival-related seed genes obtained by the RSF model. D) The venn diagram showed that the 
common key genes obtained from RNA-Seq data and clinically-integrated RNA-Seq data using both the Cox model and the RSF model. 

 

Identification of seed genes associated with 
survival 

The full TCGA cohort included 24991 genes and 
506 samples, each sample had survival time and 

survival status. The Cox univariate survival analysis 
model and the RSF model were used respectively to 
select the survival-related seed genes from all the 24 
991 genes in TCGA cohort I. The Cox model showed 
that 5376 genes were statistically significantly 
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correlated with overall survival at the p value less 
than 0.05. Besides, in the RSF model, 1113 genes were 
screened using the minimum depth selection method. 
Pathway analysis showed that the 5376 genes were 
statistically significantly enriched for Metabolic 
pathways (p = 3.28e-13) and Focal adhesion (p = 
6.14e-09) (Fig. 1B), and the 1113 genes were 
statistically significantly enriched for Metabolic 
pathways (p = 1.85e-06) (Fig. 1C). These two sets of 
survival-related seed genes were used for further 
analysis. 

Identification of key genes associated with 
prognosis 

We selected the prognosis-related key genes 
from the two groups of seed genes based on the 
forward selection model. We firstly performed the 
Cox survival analysis for clinical data of the TCGA 
cohort I, and selected the risk factors with p value less 
than 0.05 for construction of clinically-integrated 
RNA-Seq data (Supplementary Table S1). In the 
TCGA cohort I, a series of gene models were 
generated, and then the best model was selected by 
the minimum AIC. The best model identified by the 
Cox model and RNA-Seq data, the Cox model and 
clinically-integrated RNA-Seq data, the RSF model 
and RNA-Seq data, the RSF model and 
clinically-integrated RNA-Seq data respectively 
contained 13, 13, 15 and 16 genes (Supplementary 
Table S2, S3, S4 and S5). In addition, the parameters in 
the forward selection model were shown in 
Supplementary Table S6. The venn diagram showed 
that four genes were both selected from the Cox 
model and the RSF model (Fig. 1D). 

Development of survival risk score system 
We employed the four sets of prognosis-related 

key genes to construct four survival risk score systems 
in the TCGA cohort II. The risk scores were calculated 
by taking into account the expression data of these 
prognosis-related key genes and correlation 
coefficients (Supplementary Table S2, S3, S4 and S5), 
and a threshold was set at the 50th percentile. The 
higher the risk score, the larger mortality risk for 
LUAD patients. Then the patients of the TCGA cohort 
II were divided into high- and low-risk groups based 
on the threshold. High-risk patients, as defined by the 
four groups of prognosis-related key genes based on 
the risk score, had statistically significantly worse 
prognosis in TCGA cohort II (Fig. 2A, B, C and D). 
Then through the assessment of the four survival risk 
score systems (Table 1), the RSF model showed higher 
predictive power than the Cox model, and the 
predictive power of clinically-integrated RNA-Seq 
data was higher than RNA-Seq data. In short, the RSF 

model and clinically-integrated RNA-Seq data could 
predict the prognosis of LUAD patients well (HR = 
3.80, 95% CI: 2.20-6.55, p = 1.63e-06) (Fig. 2D). 

The C-index 
The C-index for the four sets of key genes in the 

TCGA cohort II was showed in Table 1. The C-index 
was mainly used to calculate the degree of 
discrimination between the predicted value of the Cox 
model and the reality in the survival analysis [39]. We 
calculated the C-index for both the Cox model and the 
RSF model, the C-index increased for clinically- 
integrated RNA-Seq data in comparison to the 
RNA-Seq data. In addition, the C-index of the RSF 
model was larger than that of the Cox model. 

External validation of key genes in the 
GSE72094 cohort 

The KM curves 
The above-mentioned models were further 

validated by using the GSE72094 cohort data (n=393). 
We performed the Cox survival analysis for LUAD 
patients from the GSE72094 cohort (Supplementary 
Table S7), the p value for stage was much less than 
0.05. The risk score of each patient was calculated 
based on the expression data of the four sets of 
prognosis-related key genes. We divided 393 LUAD 
patients of the GSE72094 cohort into high- and 
low-risk groups, based on the 50th percentile of risk 
score. The KM curves of the four sets of 
prognosis-related key genes all indicated that 
high-risk patients had statistically significantly worse 
prognosis (Fig. 3A, B, C and D). Furthermore, we 
compared the four KM survival curves obtained by 
the four groups of key genes (Table 1), the key genes 
obtained by the RSF model and clinically-integrated 
RNA-Seq data can predict the prognosis of LUAD 
patients well (HR = 4.12, 95% CI: 2.68-6.35, p = 
1.34e-09) (Fig. 3D). 

The C-index 
The C-index for the four sets of key genes in the 

GSE72094 cohort was showed in Table 1. We 
calculated the C-index for both the Cox model and the 
RSF model, the C-index increased for clinically- 
integrated RNA-Seq data in comparison to the 
RNA-Seq data. In addition, the C-index of the RSF 
model was larger than that of the Cox model. This 
result is similar to the TCGA cohort II. 

Heat map for the sixteen key genes 
We verified the sixteen key genes obtained by 

the RSF model and clinically-integrated RNA-Seq 
data based on the GSE72094 cohort. Due to the 
difference of data preprocessing between GEO and 
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TCGA database, GSE72094 cohort only contains 
eleven common genes among the sixteen key genes. 
To comprehensively investigate the expression of 
eleven genes in high- and low-risk groups, we plotted 
a heat map using the RNA-Seq data of eleven genes, 
with red color indicating higher expression and green 
color indicating lower expression (Fig. 4A). The heat 

map roughly showed that the higher the patient’s risk 
score, the greater the gene expression value. We next 
performed a KEGG pathway enrichment analysis for 
the eleven genes by using the DAVID. These eleven 
genes were statistically significantly enriched for 
Nicotine addiction (Fig. 4B). 

 

 
Figure 2: Validation of the prognosis-related key genes in the TCGA cohort II. A) The KM survival curve was generated in the TCGA cohort II by the Cox model and RNA-Seq 
data. Patients of the TCGA cohort II were divided into high- and low-risk groups based on the 50th percentile of risk score. B) The KM survival curve was generated in the TCGA 
cohort II by the Cox model and clinically-integrated RNA-Seq data. Patients of the TCGA cohort II were divided into high- and low-risk groups based on the 50th percentile of 
risk score. C) The KM survival curve was generated in the TCGA cohort II by the RSF model and RNA-Seq data. Patients of the TCGA cohort II were divided into high- and 
low-risk groups based on the 50th percentile of risk score. D) The KM survival curve was generated in the TCGA cohort II by the RSF model and clinically-integrated RNA-Seq 
data. Patients of the TCGA cohort II were divided into high- and low-risk groups based on the 50th percentile of risk score. 

 

Table 1: Survival analysis based on the TCGA cohort II and GSE72094 cohort 

 TCGA cohort II GSE72094 cohort 
model HRa (95% CIb) p C-indexc HR (95% CI) p C-index 
model 1d 2.07 (1.25-3.41) 4.38e-03 0.610 2.22 (1.50-3.28) 6.30e-05 0.615 
model 2e 2.72 (1.64-4.50) 1.02e-04 0.645 2.77 (1.85-4.15) 8.28e-07 0.630 
model 3f 2.53 (1.53-4.17) 2.88e-04 0.643 2.94 (1.95-4.43) 2.94e-07 0.623 
model 4g 3.80 (2.20-6.55) 1.63e-06 0.656 4.12 (2.68-6.35) 1.34e-10 0.672 
aHR = hazard ratio; bCI = confidence interval; cC-index = concordance index; dmodel 1: the Cox model and RNA-Seq data; emodel 2: the Cox model and clinically-integrated 
RNA-Seq data; fmodel 3: the RSF model and RNA-Seq data; gmodel 4: the RSF model and clinically-integrated RNA-Seq data. 
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Figure 3: Validation of the prognosis-related key genes in the GSE72094 cohort. A) The KM survival curve was generated in the GSE72094 cohort by the Cox model and 
RNA-Seq data. Patients of the GSE72094 cohort were divided into high- and low-risk groups based on the 50th percentile of risk score. B) The KM survival curve was generated 
in the GSE72094 cohort by the Cox model and clinically-integrated RNA-Seq data. Patients of the GSE72094 cohort were divided into high- and low-risk groups based on the 
50th percentile of risk score. C) The KM survival curve was generated in the GSE72094 cohort by the RSF model and RNA-Seq data. Patients of the GSE72094 cohort were 
divided into high- and low-risk groups based on the 50th percentile of risk score. D) The KM survival curve was generated in the GSE72094 cohort by the RSF model and 
clinically-integrated RNA-Seq data. Patients of the GSE72094 cohort were divided into high- and low-risk groups based on the 50th percentile of risk score. 

 

External validation of key genes in the 
GSE11969 cohort 

These models were further validated by using 
the GSE11969 cohort data (n = 149). We performed the 
Cox survival analysis for LUAD patients from the 
GSE11969 cohort (Supplementary Table S8), the p 
values for stage and age were much less than 0.05. The 
149 LUAD patients were divided into high- and 
low-risk groups by using the same method as the 
GSE72094 cohort. The KM curves of the four sets of 
prognosis-related key genes all indicated that 
high-risk patients had statistically significantly worse 
prognosis (Supplementary Figure S1A, B, C and D). 
The C-index for the four sets of key genes in the 
GSE11969 cohort were showed in the Supplementary 
Table S9. Furthermore, we compared the four KM 

survival curves and the C-index derived from the four 
groups of key genes (Supplementary Table S9), the 
key genes obtained by the RSF model and 
clinically-integrated RNA-Seq data can predict the 
prognosis of LUAD patients well (HR = 3.87, 95% CI: 
2.27-6.61, p = 6.81e-07) (Supplementary Figure S1D). 
In addition, by comparing the sixteen genes found in 
this study with the prognostic features of five 
published lung cancers (Table 2), we found that 
sixteen gene prognostic features were statistically 
significant in the three validation cohorts. 

Interdependency of the sixteen key prognostic 
genes 

The sixteen key genes were LINC00908, PITX3, 
GJB3, CRCT1, MELTF, BAIAP2L2, RHOV, GABRA2, 
ARF3, TRIM7, KRT18, ZNF710.AS1, LOC105370802, 
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LOC100996732, SFTPB and DKK1. Proteins 
interacting with these sixteen key genes were 
searched in starbase2.0 (http://starbase.sysu.edu.cn/ 
starbase2/index.php). The results were exported as 

the nodes and edges of a protein-gene network and 
were visualized by Cytoscape-v3.6.1. In the 
protein-gene network, the key genes were mainly 
associated with nine proteins (Fig. 4C). 

 
 

 
Figure 4: The analysis of the sixteen prognosis-related key genes. A) Heat map for the key genes obtained by the RSF model and clinically-integrated RNA-Seq data. The abscissa 
indicates genes, and the ordinate indicates 393 samples from GSE72094. The rightmost column is the patient's risk score, sorted by ascending order from top to bottom. The 
low-risk group is above the red dashed line, the high-risk group is under the red dashed line. B) KEGG enrichment pathway analysis of the key genes obtained by the RSF model 
and clinically-integrated RNA-Seq data. C) Protein-gene network. The yellow hexagons indicate the genes obtained from the RSF model and clinically-integrated RNA-Seq data, 
and the orange-red ovals indicate the associated proteins. D) The KM survival curve of cross-tumor model. 
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Table 2: Comparison of the sixteen-gene prognostic signatures to the five published lung cancer prognostic signatures 

 
studies 

TCGA cohort II GSE72094 cohort GSE11969 cohort 
HR (95% CI) p C-index HR (95% CI) p C-index HR (95% CI) p C-index 

Present study 
16-gene signature 

3.80 (2.20-6.55) 1.63e-06 0.656 4.12 (2.68-6.35) 1.34e-10 0.672 3.87 (2.27-6.61) 6.81e-07 0.670 

Shukla et al. 
4-gene signature 

2.24 (1.36-3.68) 1.48e-03 0.613 3.01 (2.00-4.51) 1.07e-07 0.639 3.02 (1.85-4.92) 9.42e-06 0.641 

Boutros et al. 
6-gene signature 

1.70 (1.04-2.77) 3.49e-02 0.561 3.17 (2.10-4.79) 3.84e-08 0.656 3.09 (1.89-5.03) 6.10e-06 0.646 

Chen et al. 
5-gene signature 

2.20 (1.34-3.61) 1.93e-03 0.625 2.83 (1.88-4.27) 7.07e-07 0.631 3.09 (1.89-5.03) 6.27e-06 0.644 

Lau et al. 
3-gene signature 

1.80 (1.10-2.94) 1.88e-02 0.588 2.81 (1.88-4.22) 5.55e-07 0.625 2.62 (1.62-4.23) 7.90e-05 0.628 

Bianchi et al. 
10-gene signature 

3.13 (1.84-5.34) 2.78e-05 0.619 2.92 (1.94-4.39) 2.53e-07 0.640 3.41 (2.08-5.59) 1.23e-06 0.655 

 

Patient prognosis prediction using 
cross-tumor models 

In order to test whether the LUAD patients data 
could identify commonalities across LUSC, we used 
the sixteen key gene-trained models obtained from 
the RSF models and clinically-integrated RNA-Seq 
data to predict the prognostic characteristics of LUSC 
patients (n = 486) from the TCGA database. The LUSC 
patients were divided into high- and low-risk groups 
according to the 50th percentile of risk score. The KM 
survival curve showed that the high-risk patients had 
statistically significantly worse prognosis (HR = 1.58, 
95% CI: 1.20-2.07, p = 1.21e-03) (Fig. 4D). 

Discussion 
Lung cancer is the leading cause of 

cancer-related mortality, non-small cell lung cancer 
(NSCLC) accounts for about 80% of the total number 
of lung cancer patients, while LUAD accounts for 
more than 40% of NSCLC [40-43]. In an effort to 
bolster clinical tools and biological understanding in 
LUAD, we presented the RNA-Seq prognostic 
signatures. We found 1,113 survival-related seed 
genes from 24,991 genes in the TCGA cohort I using 
the RSF model, and screened sixteen 
prognosis-related key genes from the 1,113 
clinically-integrated seed genes in TCGA cohort I 
using the forward selection model. Subsequently the 
sixteen gene signatures were validated in the TCGA 
cohort II and the GSE72094 cohort. The sixteen gene 
signatures can improve the power for predicting the 
prognosis of LUAD patients. 

Previous studies had also found genes associated 
with lung cancer using methods such as decision trees 
and Cox models. The sixteen gene prognostic markers 
obtained in this study had the highest HR and 
C-index and the lowest p of likelihood ratio compared 
to the prognostic genes identified from these existing 
studies. This further validated the effectiveness of 
using the RSF model and clinically-integrated 
RNA-Seq data to predict prognosis for LUAD 
patients. 

This study proposed a method for predicting 
LUAD prognosis markers based on machine learning. 
The RSF is computed from a set of binary decision 
trees and can be used to select the most important 
variables that are linked with time to event [44]. The 
Cox model is a traditional regression model which is 
not based on any assumptions about the nature or 
shape of the underlying survival distribution [45, 46]. 
The advantage of RSF is that it is more suitable for the 
automation of survival analysis than the Cox model, 
because it requires less input from the user in the 
highly relevant data settings for covariates [45]. In 
addition, by means of the forward selection model, we 
can identify multiple sets of genes rather than one 
large set of genes while adjusting for risk factors. 

The expressions of the sixteen key genes were 
closely associated with the LUAD prognosis. Pubmed 
was searched for articles on these sixteen key genes 
related to LUAD. Up to Nov 16, 2018, except for 
RHOV, SFTPB and DKK1, all other genes among the 
sixteen key genes were the first time to be identified in 
LUAD samples. In previous study, RHOV is an 
atypical RHO GTPase that has been nominated as 
upregulated in non–small cell lung cancer in a minor 
study [47]. Pro-SFTPB is over expressed in non-small 
cell lung cancer, especially in LUAD [48]. In a 
multivariate analysis of patients with LUAD, DKK1 
was independently associated with poor survival [49]. 
This result may play a guiding role in prognosis 
prediction and targeted therapy in patients with 
LUAD. 

The RNA-Seq data for individualized therapy 
intensification has the advantages of high throughput, 
high sensitivity and high efficiency [12, 50]. In 
addition, the sixteen gene signatures may provide 
clues for targeted therapy. However, this study also 
had some limitations. Due to data limitation of the 
public databases, we only considered three clinical 
variables (age, gender and tumor stage) in the 
forward selection model, and future studies may 
include more clinical variables into the model. The 
derived prognostic model also needs be validated 
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using more independent cohorts and biological 
experiments. 

In this study, first of all, a machine- 
learning-based method (RSF) is proposed to identify 
the seed genes for LUAD prognosis. Second, the 
clinical data (such as stage, age) are integrated with 
RNA-Seq data to improve prediction accuracy. Third, 
three independent cohorts (the TCGA cohort II, 
GSE72094 cohort and GSE11969 cohort) are utilized to 
validate the proposed method and the results show 
that the derived sixteen-gene signature is also 
superior to the previous five prediction models. 
Fourth, bioinformatics analyses have been used to the 
identified seed genes and key genes, and thirteen of 
the sixteen genes are reported as the key genes related 
to LUAD prognosis for the first time, which could 
contribute to the new findings of our study distinct 
with the previous studies. Finally, we also discussed 
some limitations of this study. To the best of our 
knowledge, the average 5-year survival rate for 
LUAD patients is only 15%, and the sixteen gene 
markers found in this study are especially vital for 
improving the prognosis prediction of LUAD 
patients. In the future, we could consider the 
application of advanced machine learning methods, 
such as deep learning for the prognostic prediction of 
cancer, and provide more powerful tools for 
improving targeted therapy. 
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