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Abstract 

Accumulating evidence has shown that Signal Transducer and Activator of Transcription 3 (STAT3) 
is thought to be a promising target for cancer therapy as STAT3 is frequently overexpressed in a 
wide range of cancer cells as well as clinical specimens, promoting tumor progression. It is widely 
accepted that STAT3 regulates a variety of cellular processes, such as tumor cell growth, survival, 
invasion, cancer stem cell-like characteristic, angiogenesis and drug-resistance. In this review, we 
focus on the role of STAT3 in tumorigenesis in ovarian cancer and discuss the existing inhibitors of 
STAT3 signaling that can be promisingly developed as the strategies for ovarian cancer therapy. 
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Introduction 
Signal Transducer and Activator of 

Transcription 3 (STAT3) is a member of STAT family 
proteins which includes STAT1, STAT2, STAT3, 
STAT4, STAT5A, STAT5B, and STAT61. Studies have 
identified that STAT3 consists of several distinct 
domains: the N-terminal domain crucial for 
dimer-dimer interaction, the coiled-coil containing 
protein interaction domain, the DNA binding domain 
(DBD), the linker domain, the Src-homology 2(SH2) 
domain binding to related receptors, the domain 
containing tyrosine residue at position 705 (Tyr-705), 
and the C-terminal domain necessary for 
transcriptional activation2-4(Figure 1). In general, 
STAT3 emerges as an inactive state located in the 

cytoplasm. STAT3 is activated through phosphoryla-
tion of Tyr-705 by binding to the cytoplasmic part of 
receptor tyrosine kinases including EGFR5, 6, or by 
receptor associated kinases including JAK (Janus 
kinase), or non-receptor kinases including Src, or 
diverse stimulation4, 7-9. Activated STAT3 forms 
homodimers or heterodimers through reciprocal 
pTyr-SH2 interaction, then translocate into nucleus 
and bind to special elements of STAT3-targeted genes 
(Figure 2), subsequently resulting in the transcription 
of these genes, such as Bcl2, c-myc, cyclinD1, survivin, 
MMP2 and MMP910-14. Ultimately, these genes exhibit 
their biofunction promoting tumorigenesis and 
progression. 

 

 
Figure 1. Linear topology of STAT3 structure. As shown, STAT3 is made up of the N-terminal domain, the coiled-coil domain, the DNA binding domain 
(DBD), the linker domain, the Src-homology 2(SH2) domain, and the C-terminal domain. The tyrosine residue at position 705 (Tyr-705) is close to SH2 domain. 
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Ovarian cancer is one of the most lethal 
gynecological malignancies among women. 
According to the origin of tissue, ovarian tumor can 
be classified into distinct types, including epithelium 
cell tumor, stromal endocrine cell tumor, and germ 
cell tumor. Moreover, epithelial ovarian cancer (EOC), 
as a heterogeneous disease and accounting for over 
90% of primary ovarian tumors, can also be divided 
into several different subtypes, such as serous, clear 
cell, mucinous, endometrioid, transitional cell, mixed, 
and undifferentiated type15. Unfortunately, ovarian 
cancer has frequently reached advanced stage when 
patients are at the time of diagnosis16, 17. Therefore, it 
is of great importance to identify the signaling 
pathway involved in tumorigenesis and progression 
of ovarian cancer.  

Interestingly, a significant body of evidence has 
highlighted the importance of STAT3 signaling, which 
is aberrantly activated in ovarian cancer cell lines and 
tissue samples detecting by microarray analysis, 
real-time reverse transcription-PCR, western blot as 
well as luciferase reporter, and associated with 
ovarian tumor development3, 18-21. The STAT3 
signaling is critical for ovarian cancer progression, 
such as promoting cell proliferation, survival, 
invasion, stem cell-like characteristic, angiogenesis 
and chemo-resistance (Figure 3). Conversely, 
inhibition of STAT3 activation results in the dramatic 
suppression of tumor growth, suggesting that STAT3 
signaling is a promising target for ovarian cancer 

therapy22-25. Thus, it is crucial to have a full 
understanding of functions of STAT3 in ovarian 
cancer in order to develop effective therapeutic 
interventions for ovarian cancer. 

In this review, we focus on the role of STAT3 in 
tumorigenesis of ovarian cancer and summarize the 
existing agents targeting STAT3 signaling that can be 
potentially developed as the strategies for ovarian 
cancer treatment. 

Role of STAT3 in tumorigenesis in 
ovarian cancer 

Studies demonstrates that STAT3 signaling be 
involved in cell proliferation, survival, invasion, stem 
cell-like characteristic, angiogenesis and chemoresist-
ance in ovarian cancer: 

Migration and invasiveness 
Invasion and metastasis are one of the most 

important characteristics of malignant tumors. 
Increasing number of evidence has demonstrated that 
STAT3 is frequently activated in ovarian carcinoma 
specimens, especially in high-grade type, and plays a 
crucial role in the migration and invasiveness of 
human ovarian cancer19, 26. Moreover, activated 
STAT3 is found located in focal adhesions known to 
be conducive to the motility of cell, and depletion of 
STAT3 decreased invasiveness of ovarian cancer 
cells19. Matrix metalloproteinase 9 (MMP9), a member 
of matrix metalloproteinase (MMP) family, has been 

widely reported to engage in the 
degradation of extracellular matrix, 
resulting in tumor invasion27. 
Interestingly, a recent study suggests 
that STAT3 is positively associated with 
expression of MMP9 in epithelial ovarian 
cancer. Activated STAT3 directly bind to 
special element of MMP9 gene promoter, 
inducing the increasing expression of 
MMP9. In addition, knockout of STAT3 
decreased the expression of MMP-9 at 
mRNA and protein levels, which 
suggested that pSTAT3 may get 
involved in invasiveness and metastasis 
of ovarian cancer28. Likewise, alpinetin, a 
kind of natural flavonoid, inhibits cell 
migration through down-regulation of 
MMP‑2 and MMP‑9 via suppression of 
STAT3 signaling in ovarian cancer29. 
Moreover, Seo and co-workers suggest 
that BLT2, a leukotriene B(4) receptor, 
activates STAT3 and concomitantly gives 
rise to the overexpression of MMP2, 
leading to mobility of OVCAR-3 and 
SKOV-3 ovarian cancer cells13.  

 

 
Figure 2. The abnormal activation of STAT3 signaling in ovarian cancer. In ovarian 
cancer, STAT3 is activated via phosphorylation of Tyr-705 by growth factor receptor tyrosine 
kinases, cytokine receptor associated kinases (JAK), and non-receptor kinases (Src). After activation, 
STAT3 forms dimerization and translocate into nucleus, in which they bind to promoter of 
STAT3-targeted genes, resulting in gene transcription. 
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Figure 3. STAT3-targeted genes and their role in tumorigenesis/progress. Persistent activation of STAT3 promotes its-regulated genes expression, which 
contribute to ovarian cancer growth, survival, invasion, angiogenesis, stem cell-like characteristic, and chemo-resistance. 

 
Epithelial-mesenchymal transition (EMT), which 

is marked by the downregulation of epithelial 
markers, such as E-cadherin, together with 
over-expression of mesenchymal markers, such as 
N-cadherin, Vimentin and snail, frequently occurs 
during the process of invasion and migration in 
tumor30, 31. It is reported that constitutively activated 
STAT3 is involved in EMT of ovarian cancer, as 
evidenced by the upregulation of Vimentin in 
STAT3-active cells32. In addition, investigations in the 
last decade have identified that epidermal growth 
factor (EGF) and its receptor (EGFR) as well as IL-6, 
which frequently upregulated in ovarian cancer, are 
crucial mediators of EMT31, 33, 34. Activated EGFR 
increases the level of N-cadherin and Vimentin, in line 
with activation of STAT3 and IL-6 production. 
Stimulating ovarian cancer cells with IL-6 promotes 
STAT3 phosphorylation and cell migration. 
Moreover, selectively blocking STAT3 signaling 
brings about the loss of Vimentin, N-cadherin, IL-6 as 
well as cell movement26, 32.  

Growth and survival 
The crucial role of STAT3 in facilitating tumor 

cell growth and survival has been 
well-established35-39. At the molecular level, events at 
quite an early stage have indicated that constitutive 
activation of STAT3 has a strongly correlation with 
high levels of Bcl-xL, cyclin D1 and c-myc20, 40. STAT3 

knockdown with specific small interfering RNA 
causes a loss of cell growth and induces apoptosis in 
human ovarian cancer cells, consistent with 
down-regulation of cyclin D1 and survivin level41. In 
addition, support for these finding further is provided 
by the evidence that treating human ovarian cancer 
with STAT3 inhibitor HO-3867, a novel compound 
which decreases the level of Tyrosine-phosphorylated 
STAT3 (pSTAT3) and then followed by a decline of 
cyclin D1, survivin and Bcl-2 as well as an ascent of 
cleaved PARP, caspase-3 and caspase-7, gives rise to 
suppression of cell proliferation and survival42-44 . 
Similarly, SD-1029 or SD-1008, a small molecule 
against JAK, induces apoptosis of ovarian cancer cells 
by cut-down of Bcl-X(L) and survivin expression 
through inhibition of STAT3 phosphorylation45, 46.  

Angiogenesis 
It has been proved that angiogenesis, a process 

pivotal for nutrition supply for tumor growth and 
metastasis, is a common phenomenon in malignant 
disease47. Vascular endothelial growth factor (VEGF) 
and hypoxia-inducible factor-1α (HIF-1α) are two key 
molecules in promoting angiogenesis48-51. It is 
interesting to note that STAT3 regulates VEGF 
expression, directly binding to the VEGF promoter 
and strengthening expression of VEGF and tumor 
angiogenesis52-54. Blocking STAT3 signaling with 
STAT3 decoy inhibits VEGF expression and decreases 
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tumor volumes52, 55. Furthermore, comparing with 
non-carcinoma tissues, primary ovarian epithelial 
carcinoma samples have higher level of pSTAT3 and 
VEGF56. Likewise, a study has found that 
IL6-STAT3-HIF signaling is abnormally upregulated 
in ovarian clear cell cancer samples and patients with 
such disease achieve clinical responses when 
administrated with sunitinib, a angiogenesis 
inhibitor57. Beside primary ovarian cancer sample, 
STAT3 is also activated in ascites-derived ovarian 
cancer cells (ADOCCs)58. HO-3867 deeply inhibits 
vessel formation and tumor growth in orthotopic 
mouse model through antagonizing STAT358. In 
addition, it is commonly accepted that cancer stem 
cells (CSCs) possess property of tumorigenesis 
including involving in angiogenesis59. Similar to this 
knowledge, a recent study suggests ovarian cancer 
stem-like cells (CSLCs) are capable of differentiating 
into endothelial cells (ECs) and forming microtube 
network in the presence of chemokine CCL5. Notably, 
CCL5 signaling activates the NF-κB and STAT3 signal 
pathways, then facilitating tumor angiogenesis60. 
HIF-1α is another key modulator of angiogenesis61. 
Importantly, STAT3 plays a vital role in regulating 
HIF-1α expression54, 62. The same results are also 
found in ovarian cancer cells. Treating six ovarian 
cancer cell lines with diindolylmethane decreases 
activity of cell invasion and angiogenesis through 
downregulating expression of HIF-1α and VEGF via 
targeting STAT339. 

Cancer stem cell-like characteristic 
Cancer stem cells (CSCs), similar to normal stem 

cells (SCs), have the potential of self-renewal and 
differentiation. Studies more than a decade ago have 
suggested that CSCs exist in ovarian cancer63, and are 
believed to participate in chemoresistance, recurrence 
and angiogenesis63. Interestingly, activation of STAT3 
is involved in a CSC-like residual population of 
ovarian cancer cell after treatment with paclitaxel. 
Inhibiting JAK2/STAT3 pathway brings about 
restraint of CSC-like characteristics in paclitaxel- 
treated residual cells in vitro and a rapid decline of 
tumor burden in vivo as expected23. Spheroids, known 
as aggregates of some malignant cells, are abundant in 
ovarian CSCs identified by high level of ALDH1A1 
and β-catenin, which are widely considered as CSC 
markers67. Moreover, recent studies have 
demonstrated that STAT3 correlates with spheroid 
formation24, and c-myc, previously reported to be 
modulated by STAT320, 40, is found increasing in 
ovarian cancer spheroids68, 69. In addition, CD24 
(another CSC marker) positive ovarian cancer cells 
promote spheroid formation and improve tumor- 
initiating capacity, accompanied by increased level of 

pSTAT3 and STAT3 target genes, also known as stem 
cell genes Nanog and c-myc70, further suggesting that 
STAT3 has a tight relationship with CSCs or CSC-like 
phenotypes71, 72.  

Induction of chemotherapy resistance 
Ovarian cancer is one of leading causes of death 

of patients with gynecologic cancer. Systematic 
chemotherapy after the cytoreductive surgery is 
identified standard treatment of advanced ovarian 
cancer. Although initial response to chemotherapy 
agents, especially platinum and taxane, is high, most 
cases unfortunately become chemoresistance, 
resulting in disease recurrence ultimately15. Therefore, 
a great number of studies are designed to understand 
the underlying mechanisms by which ovarian cancer 
develops resistance to chemotherapeutic agents.  

Emerging evidence has suggested that pSTAT3 
is highly expressed in paclitaxel- and cisplatin- 
resistant ovarian cancer cells21, 32, 73, 74. Inhibition of 
STAT3 activity reverses chemoresistance and 
enhances chemotherapeutic drugs-induced apoptosis, 
accompanied by decreased level of pro-survival genes 
Bcl-xL, Bcl-2 and survivin21, 73, 75-78. These results are in 
parallel with the findings that it increases toxicity of 
cisplatin or paclitaxel to ovarian cancer when treated 
with JAK2 or STAT3 inhibitor, such as AG49079, 80, 
WP106679, 80, Diindolylmethane39, SD-102945, and 
SD-100846. Moreover, a recent study reveals that 
STAT3 polymorphisms may function as an 
independent marker predicting a poor response to 
chemotherapy for patients with advanced serous 
EOC82.  

Recently, investigations demonstrate that tumor 
microenvironment, being make up of tumor cells, 
mesenchymal cells and different kinds of cytokines, is 
involved in chemoresistance in cancer cells83. 
Carcinoma-associated fibroblasts (CAFs), known to 
increase chemoresistance in tumor cells84-86, are the 
key components of mesenchymal cells in tumor 
microenvironment. Importantly, CAFs protect 
ovarian cancer cells from cisplatin cytotoxicity 
through activating STAT3 signaling76, 87. In addition, 
CAFs secret abundant IL‑6. Strengthening EMT via 
IL‑6/JAK2/STAT3 pathway results in paclitaxel 
resistance in ovarian cancer88.  

Inhibitor of STAT3 signaling in ovarian 
cancer 

As discussed above, abnormal activated STAT3 
plays a crucial role in tumor properties such as 
migration, invasiveness, proliferation, survival, 
angiogenesis, cancer stem cell-like characteristic, and 
chemoresistance in ovarian cancer, driving it to act as 
a promising therapeutic target to manage this kind 
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disease. To date, a lot of approaches have been carried 
out around inhibiting STAT3 signaling, such as using 
small molecules from natural sources, synthetic 
agents and anti-sense oligonucleotide. Here, we will 
provide an outlook into natural (Figure 4) and 
synthetic (Table 1) inhibitors of STAT3 signaling that 
have been shown to be effective in ovarian cancer 
management.  

 

Table 1. Synthetic inhibitors targeting STAT3 directly or 
indirectly in ovarian cancer. 

Agent Target References 
HO-3867 DNA-binding domain 42-44, 58, 135-137 
HO-4200 DNA-binding domain 138 
H-4318 DNA-binding domain 138 
LC28 DNA-binding domain 140 
STAT3 ODN DNA-binding domain 143 
Stattic SH2 domain 73 
AG490 JAK2 150 
Momelotinib(CYT387) JAK2 151 
Ruxolitinib JAK2 71 
AZD1480 JAK2 153 
WP1066 JAK2 154 
SD-1029 JAK2 45 
MLS-2384 JAK/Src 155 
Erlotinib EGFR 160 
Cetuximab EGFR 161 
Gefitinib EGFR 162 
Lapatinib EGFR 163 
Dasatinib Src 167, 168 
Saratinib Src 169 
Siltuximab IL-6 174, 175 
Tocilizumab IL-6R 176, 177 
SC144 gp130 178 
siRNA–PLGA/CSO STAT3 179 
Oncolytic adenovirus (M4) STAT3 181 

 

Natural STAT3 inhibitors in ovarian cancer 
Standard chemotherapy is indispensable part of 

ovarian cancer treatment. Despite high sensitivity to 
chemotherapy, most of patients ultimately become 
chemoresistance. Moreover, chemotherapy drugs not 
only have potential to kill cancerous cells, but also 
generate severe toxic side effects on normal tissues 
and cells. These side effects limit clinical high dose 
use, prolong total treatment time, or even results in 
treatment interruption, which has a negative impact 
on patient's prognosis. Hence, researchers are 
working hard to find low-toxic and highly effective 
anti-tumor drugs, and natural products are an 

obvious example. Natural compounds are the basis of 
drug discovery and design, and most of anticancer 
drugs originate from natural products89. Under the 
efforts of researchers, to date, several natural 
compounds against STAT3 signaling are explored in 
preclinical trial or clinical trial in ovarian cancer. 

Resveratrol 
Resveratrol, a natural compound with 

antioxidant and anti-inflammatory function, is 
derived from red grapes and berries and has drew 
people's great attention. Resveratrol is thought to be 
preventive agent of cardiovascular disease90. There is 
also growing evidence that resveratrol possesses 
anti-tumor potential in a great number of cancers, 
including ovarian cancer91-96. Zhong et al found that 
resveratrol inhibits cell proliferation and enhances 
apoptosis of ovarian cancer, and activated STAT3 is 
the molecule target of resveratrol37. Similar to this 
finding, a recent study suggests that resveratrol 
suppresses growth, increases apoptosis as well as 
autophagic activity in ovarian cancer cells, 
presumably through blocking STAT3 signaling 
pathway97. In addition, IL-6, a pro-inflammatory 
cytokine which are able to activate STAT326, promotes 
cell invasion and metastasis, accompanied by 
autophagy formation and down-regulation of ARHI 
(A Ras homologue member I), an imprinted 
tumor-suppressor gene known to suppress cell 
growth and motility. On the contrary, resveratrol 
neutralizes the effect of IL-6 on ovarian cancer cells 
and reduces level of STAT3 expression95. 
Furthermore, a latest report has demonstrated that 
ARHI is upregulated, in paralleled with decreased of 
STAT3 in ovarian cancer cells treated with 
resveratrol98. Altogether, preclinical practices show 
that resveratrol elicits antitumor effect on ovarian 
cancer cells. However, there is no clinical trial to 
assess resveratrol's property in patients with ovarian 
cancer. Additionally, despite phase I study conducted 
in patients with colorectal cancer and in healthy 
volunteers finds resveratrol consumed 5.0 g daily 14 
days is safe and well tolerated99-101, it still warrants 
further clinical investigations to evaluate its clinical 
activity. 

 

 
Figure 4. Chemical structures of natural inhibitors of STAT3 in ovarian cancer. 
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Curcumin 
Curcumin (diferuloylmethane) is a phenolic 

component extracted from turmeric (Curcuma longa) 
and is often used as food additive spice. Intriguingly, 
modern studies have found that curcumin have more 
functions other than dietary spice, such as 
anti-inflammatory and anti-cancer effect102-105. 
Curcumin is involved in inhibition of transformation, 
survival, and metastasis in cancer106. For example, 
treating ovarian cancer cells with curcumin 
suppresses activation of STAT3, resulting in 
decreased cell viability38. Moreover, targeting STAT3 
phosphorylation by which curcumin inhibits invasion 
and metastasis of ovarian cancer cells107. Apart from 
the STAT3 pathway, curcumin also inhibits 
characteristics of ovarian cancer via blocking the other 
signaling, including sarco/endoplasmic reticulum 
calcium ATPase, PI3K/Akt and nuclear factor-kappaB 
pathway108-110. Aside from its functions, it is a 
surprising finding that curcumin is very safe even at a 
high dose of oral 12 g per day in human111-113. 
Unfortunately, one main drawback to limit its use in 
medical application is rapid metabolism and low 
bioavailability114. As a consequence, many approaches 
have been adopted to circumvent this problem, 
including engineering its analogs by modulating 
curcumin structure115 and improving its delivery 
systems through loading in nanoparticles116. Take 
HO-3867 for example. HO-3867, a curcumin analog, 
exhibits substantially higher anticancer efficacy than 
the parent curcumin117. In all, improving its 
bioavailability, curcumin may be a great potential 
candidate as an anti-tumor drug in ovarian cancer. 

Corosolic acid 
Corosolic acid, a natural triterpenoid compound 

derived from banaba leaves and apples, has been 
shown to have anti-tumor effects on a variety of 
tumor models, such as glioblastoma118, prostate 
cancer119, 120, retinoblastoma121, renal carcinoma122, 
gastric cancer123, breast cancer124, liver cancer125, 126, 
colon cancer127, lung adenocarcinoma128, cervix 
adenocarcinoma129, osteosarcoma130, 131. Similar to 
curcumin and resveratrol, CA is a potent STAT3 
inhibitor, suppressing cell growth of ovarian cancer 
and glioblastoma by abrogating STAT3 activity118, 132. 
Moreover, since aberrantly activated STAT3 is 
strongly associated with chemoresistance as 
mentioned above, CA also enhances cytotoxicity of 
chemotherapeutic drugs to ovarian cancer cells via 
inhibition of STAT3 activation132. Additionally, tumor 
microenvironment, as discussed previously, 
participates in progress of tumor83 and tumor- 
associated macrophages (TAMs) of M2 phenotype is a 
component of tumor microenvironment. Recent 

research indicates M2 macrophages regulate cell 
growth and metastasis of ovarian cancer133, 134, and 
STAT3 is activated in ovarian cancer cells when 
coculturing with M2 macrophages134. Interestingly, 
CA reduces STAT3 activity in ovarian cancer cells 
through inhibiting M2 polarization of macrophages132. 
Although the studies of CA in ovarian cancer is 
relatively rare comparing to curcumin and 
resveratrol, effects of CA have been well established 
in certain cancer models, providing rational evidence 
for conducting further investigations on it and 
developing it as an inhibitor in ovarian cancer. 

Synthetic blockers of STAT3 signaling in 
ovarian cancer 

As discussed above, because of rapid 
metabolism or delivery systems, some natural 
compounds have low bioavailability in serum. Hence, 
it is necessary to design corresponding analogues or 
synthesize other novel small molecules that can 
inhibit STAT3 activation. Besides, given that STAT3 is 
made up of distinct domains and activated by 
receptor tyrosine kinases, or receptor associated 
kinases, or non-receptor kinases, or diverse cytokines, 
synthetic agents targeting STAT3 signaling are mainly 
classified into the following categories in ovarian 
cancer: 1) direct inhibitors targeting the domains of 
STAT3; 2) indirect inhibitors targeting the upstream 
factors. 

Direct inhibitors of STAT3 
By targeting the DNA-binding domain, 

N-terminal domain, SH2 domain of STAT3, direct 
inhibitors interfere with STAT3 activation, resulting in 
the blockage amplification of STAT3 signaling 
cascade reaction and concomitantly the decrease of 
STAT3-regulated gene level.  

Therefore, specific domains of STAT3, in theory, 
are promising targets for designing STAT3 inhibitors. 
So far, there are some direct inhibitors which interact 
with the DNA-binding domain in preclinical trial of 
ovarian cancer. For example, HO-3867, one of diaryli-
denylpiperidone(DAP)-based synthetic compounds, 
also known as curcumin analog, directly binds to the 
STAT3 DNA-binding domain and exclusively inhibits 
activation of STAT3 without interfering with that of 
other member of STATs135. HO-3867 decreases 
migration of human ovarian cancer cells. 
Furthermore, compared with non-transformed cells 
and tissues, HO-3867 exerts more toxicity, including 
increasing apoptosis and inhibiting tumor growth, on 
both in vitro and in vivo using xenograft model135. 
These findings are strongly supported by the results 
of several reports42-44, 58, 136, 137. Similar to HO-3867, 
HO-4200 and H-4318 are two derivatives of DAP 
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compounds that selectively interact with DNA- 
binding domain of STAT3. Treating cisplatin-resistant 
ovarian cancer cells with HO-4200 and H-4318 
decreases the level of STAT3 target proteins: c-myc, 
Bcl-2, Bcl-xl, survivin and cyclin D1/D2, giving rise to 
inhibition of cell survival and induction of apoptosis. 
In addition, HO-4200 and H-4318 also inhibit VEGF 
expression and decrease migration/invasion 
activity138.  

Besides DAP compounds, LC28, designed on the 
basis of pharmacophore of a STAT3 inhibitor 
inS3-54139, is another new inhibitor targeting the 
DNA-binding domain of STAT3140. Huang and 
co-workers have identified that LC28 significantly 
inhibits growth of cisplatin-resistant ovarian cancer 
cells by blocking interaction between STAT3 and 
DNA140. Beside the inhibitors mentioned above, 
STAT3 decoy oligodeoxynucleotides (ODN) is 
another strategy inhibiting DNA binding activity of 
STAT3141. The STAT3 decoy is a double-stranded 
oligonucleotide binding to STAT3 with a high 
specificity, and it exhibits anti-proliferation capacity 
on head and neck cancers as a phase 0 clinical trial 
shows142. Furthermore, in addition to head and neck 
cancers, an investigation conducted by Zhang et al has 
revealed that STAT3 decoy ODNs also induces cell 
apoptosis in xenograft mode of ovarian cancer143.  

The SH2 domain of STAT3 is extremely 
important not only for recognition of related 
receptors, but also for dimerization of STAT3 itself or 
with other members of STAT family. Then STAT3 is 
phosphorylated and activated, subsequently 
translocate into nucleus to realize its biological 
function. Hence, the SH2 domain provides us an 
attractive opportunity for designing specific STAT3 
inhibitors. Compared with inhibitors targeting DBD, 
the number of agents that inactivate SH2 domain is 
quite few in ovarian cancer. However, investigators 
still do all they can do to design new inhibitors 
directly acting on the SH2 domain. Stattic is an 
obvious example. Schust et al have suggested that 
Stattic, a nonpeptidic small molecule, directly inhibits 
the SH2 domain of STAT3, leading to inactivation of 
STAT3 and apoptosis of STAT3-dependent cancer 
cells144. More interestingly, as abnormally activated 
STAT3 plays a critical role in chemoresistance 
mentioned above, stattic improves the sensitivity of 
chemo-resistant ovarian cancer cell to cisplatin both in 
vitro and in vivo73.  

Apart from DBD and SH2 domain, the 
N-terminal domain is a vital component of STAT3. 
The N-terminal domain, also called oligomerization 
domain, has eight helices mediating tetramerization 
of two STATs dimers and interaction with other 
proteins145. The forming complex may influence 

transcriptional activity of STAT3, indicating that the 
N-terminal domain of STAT3 regulates transcription 
of STAT3 targeted genes which are involved in tumor 
progress146. Therefore, agents targeting the 
N-terminal domain may potentially show anticancer 
efficacy. ST3-H2A2, a highly selective inhibitor of the 
N-terminal domain of STAT3, suppresses STAT3 
signaling147. ST3-H2A2 induces expression of 
proapoptotic genes in cancer cells (PC3, DU145 
prostate cancer cells and MCF-7, MDA-MB-231 breast 
cancer cells), but not in normal epithelial cells 
(prostate epithelial cells RWPE-1 and human 
mammary epithelial cells (HMEC)), resulting in 
apoptotic death of cancer cells147. Unfortunately, to 
date, there is no inhibitors of the N-terminal domain 
reported in the ovarian cancer. 

Indirect inhibitors of STAT3 
STAT3 signaling pathway is a cascade 

amplification reaction activated by either upstream 
kinases or diverse cytokines, such as JAK, EGFR, Src 
as well as IL-6. As a result, these upstream factors are 
attractive strategies to disturb the activation of STAT3 
and there are existing several inhibitors targeting 
them after long years ongoing efforts. AG490 is an 
inhibitor of JAK2148. Studies have suggested that 
AG490 exerts anti-tumor effects on several cancers, 
including acute lymphoblastic leukaemia148, head and 
neck squamous cell carcinoma149, ovarian cancer150 
and so on. Moreover, AG490 reverses paclitaxel 
resistance through decreasing the level of pSTAT3 
and multidrug resistance protein 1 in ovarian cancer 
cells150. However, there is no clinical trial of AG490 in 
malignancies in spite of its anti-tumor efficacy in the 
preclinical studies. Momelotinib and ruxolitinib both 
are JAK inhibitors and they have been well proved to 
suppress ovarian cancer growth71, 151. Despite the fact 
that ruxolitinib is used in clinical practice in 
myelofibrosis and momelotinib treatment was 
noninferior to ruxolitinib for spleen response in Janus 
kinase inhibitor-naïve patients with myelofibrosis 
reported by a phase III randomized trial152, there is no 
clinical trial conducted in ovarian cancer. Hence, this 
may be next step of our work. Except for AG490, 
Momelotinib and ruxolitinib, there are other existing 
JAK inhibitors, such as AZD1480153, WP1066154, 
SD-102945, and MLS-2384155 also having anti-tumor 
property in ovarian cancer model. It is of particular 
note here that although AZD1480 confers anti-tumor 
effects on ovarian cancer in preclinical research, few 
further studies have been performed in clinical. The 
possible reason for this phenomenon may be the 
severe side effect on nervous system when treating 
myelofibrosis with AZD1480 as a phase I clinical trial 
reported156. 
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Beside JAK inhibitors, the EGFR inhibitor is 
another way to inactivate STAT3 indirectly. 
Preclinical evidence reveals that EGFR inhibitors, 
such as Erlotinib, Cetuximab, Gefitinib and lapatinib, 
decrease the expression of STAT3157-160. Nevertheless, 
such inhibitors have minimal clinical activity or do 
not improve progression-free or overall survival in 
the treatment of patients with ovarian cancer161-164. 
One possible reason for this phenomenon may be the 
feedback activation of STAT3 signaling pathway in 
the long run165.  

Src is a cell membrane-associated non-receptor 
tyrosine kinase and plays a critical role in 
proliferation, migration, and differentiation of tumor 
cells166. At the molecular level, activation of Src results 
in initiating of STAT3 pathway167. Therefore, Src is 
also served as an attractive therapeutic target for 
cancer management. In fact, a Phase II trial conducted 
by The Gynecologic Oncology Group has 
demonstrated that dasatinib, an oral Src inhibitor, 
shows limited efficacy in patients with recurrent 
epithelial ovarian cancer when administered alone168. 
However, A recent study suggests that the 
combination of dasatinib with paclitaxel generates 
synergistic inhibition in growth of ovarian granulosa 
cell tumor cells169. Interestingly, the finding of 
saracatinib (another Src inhibitor) is contrary to that of 
dasatinib as saracatinib does not improve efficacy of 
weekly paclitaxel in platinum-resistant ovarian 
cancer170. 

IL-6 is one of the cytokines and binds specifically 
to its receptor (IL-6R) to form IL-6/IL-6R complex, 
then recruits downstream molecular gp130 and 
ultimately develops as a trimer IL-6/IL-6R/GP130 
complex171. This trimer gives rise to activation of 
STAT3172. The IL-6/gp130/STAT3 signaling is 
frequently activated in tumors and it may be 
developed as a target for cancer treatment and 
prevention173, 174. Guo et al have reported that 
siltuximab, a monoclonal anti-IL-6 antibody, 
significantly inhibits IL-6-induced STAT3 activation 
and decreases the expression of STAT3 targeted gene 
in ovarian cancer cells. Moreover, siltuximab restores 
sensitivity to paclitaxel in paclitaxel-resistant ovarian 
cancer cell line in vitro. However, combination 
siltuximab with paclitaxel has limited effect on 
xenograft mouse mode in vivo175. Similarly, there is no 
clinical benefit from siltuximab monotherapy in 
patients with advanced/refractory ovarian cancer176. 
Tocilizumab is a humanized IL-6R antibody. Treating 
clear cell carcinoma of the ovary with tocilizumab 
impairs the activity of cell invasion and improves 
sensitivity to chemotherapy177. To date, a phase I 
clinical trial of tocilizumab is finished, finding that it 
is feasible and safe in EOC patients combined 8 

mg/kg tocilizumab with doxorubicin or 
carboplatin178. SC144, a first-in-class orally active 
gp130 inhibitor, shows cytotoxicity including 
induction of apoptosis and cell death in ovarian 
cancer cells but no in normal kidney epithelial cells 
and endometrial epithelial cells. Furthermore, SC144 
inhibits tumor growth of xenografts in mouse without 
substantial toxicity to normal tissues179.  

At last, using RNA interference (RNAi) 
technology is another approach to block STAT3 
signaling and such strategy has also been adopted in 
ovarian cancer cells180. Despite the efficacy of siRNA 
in cancer treatment, siRNA has not been widely used 
in clinical because of its instability and unsatisfactory 
delivery systems181. Hence, researchers have worked 
on numerous methods for overcome these carriers. 
Recently, an oncolytic adenovirus (M4), which 
selectively silences STAT3 expression by producing 
antisense STAT3 complementary DNA, greatly 
suppresses survival of ovarian cancer cells but 
sparing normal cells. In addition, M4 enhances 
cisplatin antitumor property in vitro and in vivo, and 
does not exert synergistic toxicity to liver when 
combined with cisplatin181. These findings provide a 
rationale reason for M4 further research to develop as 
an antitumor agent in patients with ovarian cancer. 

Conclusions 
Ovarian cancer is one of leading cause of death 

among women. Conventional chemotherapy is a part 
of standard treatment in ovarian cancer. However, 
chemotherapy is poorly tolerated for patients as a 
result of severe adverse side effects and most of 
patients are on the road to chemoresistance. 
Therefore, it is urgent need to design alternative and 
complementary therapeutic strategies for 
circumventing this dilemma. Abnormally activated 
STAT3 has frequently been found in ovarian cancer 
cells and clinical specimens. Persistent activation of 
STAT3 enhances cell proliferation, survival, invasion, 
cancer stem cell-like characteristic, angiogenesis and 
drug-resistance in ovarian cancer. Hence, STAT3 
provides us an attractive target for ovarian cancer 
treatment and prevention. To date, there are several 
natural and synthetic inhibitors targeting STAT3 
signaling directly or indirectly. Some inhibitors show 
significant toxicity or have synergistic effects when 
combined with conventional chemotherapy both in 
vitro and in vivo but no or little, if any, on normal cells 
and tissues. However, in spite of great efficacy on cell 
lines, quite few inhibitors exhibit minimal activity in 
xenografts or in patients, possibly because of low 
bioavailability, bad delivery systems and complex 
environment in vivo. Researchers have adopted 
numerous ways to address these concerns. In all, 
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given the vital role of STAT3 in progress of ovarian 
cancer and the published reports on STAT3 inhibitors, 
it is our belief that strategy targeting STAT3 signaling 
will achieve a great success in clinic of ovarian cancer. 
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