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Abstract 

Osteosarcoma (OS) is the most common primary bone tumor, whose poor prognosis is mainly due to lung 
metastasis. The aim of this study is to build a practical and valid diagnostic test that can predict the risk of OS 
metastasis and progression. We performed weighted gene co-expression network analysis (WGCNA) on 
GSE21257 from the Gene Expression Omnibus (GEO) database, which contains microarray data of biopsies 
from OS patients. In these modules, the highest association was found between the blue module and metastasis 
stage (r = -0.52) by Pearson’s correlation analysis. Based on Least Absolute Shrinkage and Selection Operator 
(LASSO) Cox regression, we derived eight clinically significant genes and constructed an eight-gene signature 
for metastasis status. It showed great efficacy to distinguish metastasis from non-metastasis (AUC = 0.886) and 
the results were validated in The Cancer Genome Atlas (TCGA) database. Functional enrichment analysis of 
hub genes showed that their biological processes focused on immune-related pathways, suggesting the 
important roles of immune cells, immune pathways and the tumor microenvironment in metastasis 
development. In conclusion, we discovered an efficient gene signature with great efficacy to distinguish 
metastasis status, which may help improve early diagnosis and treatment, enhancing the clinical outcomes of OS 
patients. Besides we created an effective protocol to seek for several hub genes in high-throughput data by 
combining WGCNA and LASSO Cox regression. 
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Introduction 
Osteosarcoma (OS), which is characterized by a 

high propensity of lung metastasis, is the most 
common primary bone tumor in adolescents and 
young adults (incidence: 0.2 – 3/100 000/year overall 
and 0.8 – 11/100 000/year at age 15–19 years) [1-3]. 
Despite advances in surgical techniques, multi-agent 
systemic chemotherapy, precise radiotherapy and 
immunotherapy, the 5-year survival rate of a localized 
tumor remains at 60 – 70%, while that of metastasis 
and recurrence is less than 20% [4-7]. The poor 

prognosis (metastasis and recurrence) necessitates 
intensive seeking for the molecular mechanism of 
metastasis development and an effective method for 
early diagnosis. However, the extremely low 
incidence of OS presents an inevitable challenge to 
study the rare but deadly disease in depth. 

Over the last decades, high-throughput 
technologies such as gene microarray and gene 
sequencing have been broadly applied to identify 
driver genes and to detect significant somatic 
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nucleotide polymorphisms and gene fusions in the 
processes of tumor genesis, recurrence and metastasis 
[8-11]. Understanding these genetic alterations may 
help elucidate the molecular mechanism of OS, but 
the genetic and cytogenetic complexity intrinsic to OS 
is challenging since cancer biology is mediated by 
various factors, such as circulating immune cells, 
hypoxia state and the tumor microenvironment 
[12-14]. A practical and valid diagnostic test that can 
predict the risk of OS metastasis or progression is 
urgently needed. 

Weighted gene co-expression network analysis 
(WGCNA) is a systematic biology method for 
describing the correlation patterns among genes 
across microarray samples [15-18]. Instead of 
screening out differentially expressed genes (DEGs), 
WGCNA clusters highly correlated genes into one 
module and relates it to clinical traits, which may be 
more beneficial in identifying clinical biomarkers for 
diagnosis and therapy. In the current study, we 
performed WGCNA on OS microarray data and 
clinical traits with the aims of identifying biomarkers 
that are significantly associated with metastasis 
development. 

Material and Methods 
Data Sources and Data Preprocessing  

Preprocessed gene expression profiles of 
GSE42352, GSE21257 and GSE36001 were 
downloaded from the GEO database. GSE42352 is a 
microarray dataset containing 103 OS cells and 15 
mesenchyme stem cells [19]. GSE21257 is a microarray 
dataset containing 53 pre-chemotherapy biopsies of 
OS patients, the clinical characteristics of which are 
also attached [11]. Among the 53 OS patients, 34 
developed metastasis within 5 years, while 19 did not. 
GSE36001 is a microarray dataset containing gene 
expression patterns of 19 OS cell lines and 6 normal 
samples (osteoblasts and bones)[20]. The platforms of 
these datasets are the GPL10295 Illumina human-6 
v2.0 expression beadchip and GPL6102 Illumina 
human-6 v2.0 expression beadchip. For multiple 
probes corresponding to one gene, their median 
expression values were taken as the gene expression 
value. After removing 6 samples without complete 
clinical characteristics in GSE21257, 47 samples were 
used for further analysis. The ratio of metastasis 
status in male OS patients was 74.2% (23/31) and that 
for female OS patients was 43.8% (7/16), showing no 
significant difference between gender (P = 0.057). The 
expression matrix and clinical matrix were acquired.  

Screening for DEGs 
Processed data of 24,998 mRNAs of 103 OS cells 

and 15 mesenchyme stem cells samples in GSE42352 

were subjected to DEG analysis. The linear models for 
microarray data (limma) package in R (x64, version 
3.4.3) was utilized [21]. Genes with |log2FC| value > 
1 and false discovery rate (FDR) < 0.05 were identified 
as DEGs and selected to match the GSE21257 
expression matrix for subsequent analysis. 

Constructing Dynamic Weighted Gene 
Co-Expression Network 

WGCNA is a systems biology method for 
describing the correlation patterns among genes 
across microarray samples [15,17]. WGCNA can be 
used to find clusters (modules) of highly correlated 
genes, to summarize such clusters using the module 
eigengene or an intramodular hub gene, to relate 
modules to one another and to external sample traits 
(using eigengene network methodology), and to 
calculate module membership measures. 

In the current study, WGCNA was performed on 
DEG-matched GSE21257, and modules were 
identified with a dynamic tree-cutting algorithm with 
a minimum module size of 10 genes, a scale-free 
topology threshold of 0.9 and merged with a 
MEDissThres parameter of 0.25. After relating 
modules to clinical traits, modules with the highest 
Pearson’s correlation coefficient were selected for 
subsequent analysis. 

Lasso Cox Regression and Metastasis 
Signature 

A metastasis signature was constructed 
according to the expression level and association with 
the metastasis status of genes. If a gene was positively 
associated with metastasis status (acting as risk 
factor), the score was assigned 1, 2, 3, or 4 from low- to 
high-quartered expression, which was reverse for 
negatively associated genes. The sum of the scores of 
selected genes represents the meta-score for an 
individual sample. Metastasis-free survival analysis 
was performed on the clinical traits of GSE21257 with 
R package “survival” based on the meta-score and 
expression values of each individual gene. Moreover, 
receiver operating characteristic (ROC) curves were 
drawn and the area under the curve (AUC) was 
computed using R package “pROC” [22] for further 
verification.  

Least Absolute Shrinkage and Selection Operator 
(LASSO) is a popular method that has been extended 
and broadly applied to the Cox proportional hazard 
regression model for survival analysis with 
high-dimensional data [23-25]. In the current study, a 
LASSO Cox regression model was used to detect hub 
genes that were significantly associated with 
metastasis-free survival. Ten-fold cross-validation for 
tuning parameter selection was performed and the 
partial likelihood deviance met the minimum criteria.  
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Furthermore, survival analysis was performed 
on survival data downloaded from Oncolnc [26], 
based on The Cancer Genome Atlas (TCGA) database 
to validate the significance of LASSO Cox-derived 
signature. Meanwhile, the expression levels of these 
derived genes were compared between human OS cell 
lines and normal tissues based on the dataset 
GSE36001. 

Functional Annotation and Gene Set 
Enrichment Analysis (GSEA) 

FUNRICH software was used to conduct Gene 
Ontology (GO) and biological pathway enrichment 
analyses of selected genes [27]. The 47 OS samples in 
the GSE21257 dataset were used to conduct GSEA 
analysis [28] according to metastasis status 
(metastasis vs. non-metastasis). Differences of a 
nominal P value < 0.05 and an FDR less than 25% 
were defined as significant. 

Drawing Protein-Protein Interactions (PPIs) 
and Detecting Hub Genes 

After downloading PPIs data from the Search 
Tool for the Retrieval of Interacting Genes (STRING) 
database [29] with an interaction score threshold of 
0.15, a plug-in cyto-Hubba in Cytoscape software 

[30,31] was performed to detect hub genes with the 
strongest interactions with other genes. Using 12 
algorithms in cyto-Hubba, dozens of hub genes were 
selected for subsequent analysis. 

Statistical Analysis  
Univariate statistical analyses were performed 

using GraphPad Prism Software (Version 6.01). A 
T-test was used to compare continuous data with 
normal distribution between two groups. The 
difference between rates was tested by a chi-square 
test or Fisher’s exact test. Cumulative survival time 
was calculated by the Kaplan–Meier method and 
analyzed by the log-rank test. A P-value < 0.05 or a 
corrected P-value < 0.05 was considered statistically 
significant. The version of R used in the current study 
was 3.4.3 (x64). 

Results 
Screening DEGs 

The flow diagram of our protocol is shown in 
Figure 1. With limma package in R performed on the 
preprocessed expression matrix of GSE42352 under 
the threshold of FDR < 0.05 and |log2FC| > 1, 814 
DEGs (406 up-regulated and 408 down-regulated) 

were screened out (Figure 2) and selected for 
subsequent analysis. Specific information of 
these genes is shown in Supplementary Table 
S1. 

Detecting Clinically Significant Modules 
WGCNA was performed on the 814 DEGs 

of 47 samples in GSE21257 (Figure 3). There was 
no obvious outlier in the sample clustering 
(Figure 3A), and the connectivity between genes 
in the gene network met a scale-free network 
distribution with a soft threshold power of β = 4 
(scale-free R2 = 0.9) (Figure 3B). After merging 
similar clusters, nine modules that contained 
groups of genes with similar patterns of 
connection strengths with other genes were 
identified (Figure 3C).  

As shown in the module-feature 
relationship, the highest association was found 
between the blue module and metastasis stage (r 
= -0.52, P = 2e-4) and the speed of metastasis (r = 
-0.5, P = 4e-4) by Pearson’s correlation analysis 
(Figure 3D). Thus, the blue module was selected 
as a module of interest and as a clinical feature to 
be studied in subsequent analyses 
(Supplementary Table S2). In addition, 
scatterplots of Gene Significance vs. Module 
Membership in the blue module showed that 
they were highly correlated (Figure 3E, 3F). 

 

 
Figure 1. A flow diagram of our study. First, we annotated gene probes to gene symbols and 
screened out differentially expressed genes between osteosarcoma cells and mesenchyme stem 
cells in GSE42352. Then we performed WGCNA on GSE21257 and identified clinically 
significant modules. LASSO Cox regression was performed on the genes in the module and 
several clinically significant genes were screened out, with which we constructed a multigene 
signature to predict metastasis risk and clinical outcome. The results were internally validated 
and externally validated in TCGA database. Meanwhile we performed functional enrichment on 
the module and it shed light on the in-depth mechanism of metastasis development. PPIs 
network also helped to identify hub genes.  
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Figure 2. Volcano plot of significance of gene expression difference between OS cells and mesenchyme stem cells. The x axis shows the gene expression difference by a log 
transformed fold change while the y axis shows significance by –log10 transformed p-value value. A gene is considered significantly differentially expressed if its |log(FC)| > 1 and 
p-value < 0.05. Red dot represents the up-regulated gene while blue dot represents the down-regulated gene. 

 

Table 1. Discrimination ability and Survival analysis of genes in the LASSO Cox-derived signature. 

Gene Symbol Coefficient AUC Metastasis-free Survival (GSE21257) Overall Survival (GSE21257) Overall Survival (TCGA) 
correlation P-value correlation P-value correlation P-value 

HLA-DRA 0.153 0.849 +† <0.001* + 0.013* + 0.016* 
HLA-DMA 0.073 0.828 + 0.001* + 0.141 + 0.020* 
LYZ 0.052 0.826 + <0.001* + 0.047* + 0.032* 
PEA15 0.011 0.827 + 0.002* + 0.245 + 0.031* 
NUPR1 0.241 0.731 + 0.010* + 0.061 + 0.039* 
C12orf75 0.095 0.790 + <0.001* + 0.188 - 0.308 
ASPM -0.004 0.785 -‡ 0.005* - 0.151 - 0.287 
MATN2 -0.121 0.694 - 0.273 - 0.663 - 0.039* 
Signature  0.886 - <0.001* - 0.003* - 0.010* 
† Addition sign ‘+’ means positive relationship with clinical outcome (protective factor). 
‡ Subtraction sign ‘-’ means negative relationship with clinical outcome (risk factor). 
* Means statistic significant difference (P < 0.05). 

 

Metastasis Signatures 
We constructed an eight-mRNA-based classifier 

using a LASSO Cox regression model with the tuning 
parameter meeting the criteria that partial likelihood 
deviance was minimal (Figure 4). The eight genes 
were HLA-DRA, HLA-DMA, LYZ, PEA15, NUPR1, 
C12orf75, ASPM and MATN2. Their coefficients are 
listed in Table 1. We validated the differentially 
expression of these genes between human OS cell 
lines and normal tissues in the dataset GSE36001 
(Figure 5A), showing highly consistent results with 
LASSO Cox regression. 

In the LASSO Cox-derived signature (Figure 5), 
the meta-score of the metastasis group was 

significantly higher than the non-metastasis group (P 
< 0.0001) (Figure 5B), while the ROC curves 
demonstrated great efficacy to distinguish metastasis 
from non-metastasis (AUC = 0.886, Figure 5C), whose 
AUCs were higher than that of any individual gene 
(Table 1 and Supplementary Figure S1). 
Metastasis-free survival analysis according to the 
meta-score (Figure 5D) and the expression value of an 
individual gene (Supplementary Figure S2) showed 
most of them were significantly associated with the 
clinical outcomes of OS patients. We also found the 
LASSO Cox-derived signature could significantly 
predict poor overall survival while some of the 
individual genes could not (Figure 5E and 
Supplementary Figure S3).  
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Figure 3. Weighted gene co-expression network analysis. (A) Sample clustering showed no evident outliers. (B) Analysis of network topology showed that it met the scale-free 
topology threshold of 0.9 when β = 4. The left panel shows the scale-free fit index as a function of the soft-threshold power. The right panel displays the mean connectivity as 
a function of the soft-threshold power. (C) Clustering dendrogram of genes based on topological overlap. Each module represents a cluster of co-related genes and was assigned 
a unique color. (D) Heatmap displaying the correlations and significant differences between gene modules and clinical traits. Correlations are displayed in the rectangle, while 
significant differences are displayed in brackets. (E) A scatterplot of Gene Significance (GS) for metastasis vs. Module Membership (MM) in the blue module. (F) A scatterplot of 
Gene Significance (GS) for metastasis speed vs. Module Membership (MM) in the blue module. Both (E) and (F) showed a highly significant correlation between GS and MM in the 
blue module. 

 
Compared with individual genes, the LASSO 

Cox-derived signature had a much greater efficacy to 
distinguish metastasis from non-metastasis patients 
and to predict clinical outcomes. In view of the fact 

that there are few microarray data of OS, we 
performed survival analysis on different cancers 
based on TCGA database (Figure 6). The signature 
score was negatively associated with overall survival 
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in sarcoma (SARC) patients (n = 258) (Figure 6A). 
Interestingly, we also found that a high signature 
score could predict poor clinical outcomes in cervical 
squamous cell carcinoma and endocervical 
adenocarcinoma (CESC) (n = 264), lung 
adenocarcinoma (LUAD) (n = 592), and skin 
cutaneous melanoma (SKCM) (n = 458) despite their 
different histogeneses, which validated the important 
prognostic role of the LASSO Cox-derived signature 
(Figure 6B, 6C, 6D).  

 

 
Figure 4. Constructing the eight-mRNA-based classifier by the LASSO Cox 
regression model. (A) LASSO coefficient profiles of the 194 metastasis-related genes 
in the blue module. (B) Ten-fold cross-validation for tuning parameter selection in 
the LASSO model. Partial likelihood deviance is plotted against log (λ), where λ is the 
tuning parameter. Dotted vertical lines were drawn at the optimal values by minimum 
criteria and 1-s.e. criteria. 

  

Functional Annotation and GSEA on Hub 
Genes 

To obtain a primary understanding of the 
biological relevance of the blue module, GO 
enrichment and biological pathway analyses were 

conducted (Figure 7). The top GO terms and 
pathways are shown in Figure 7A. The most enriched 
GO terms were BP (biological process), such as 
Immune response, Signal transduction, Cell 
communication, and Regulation of cell growth, CC 
(cellular component) such as Plasma membrane, 
Extracellular, Lysosome, and Exosomes, and MF 
(molecular function) such as Receptor activity, 
GTPase activity, and Complement activity. Moreover, 
these genes were mainly enriched in pathways such 
as Immune System and Epithelial-to-mesenchyme 
transition, suggesting the importance of the tumor 
microenvironment in metastasis development (Figure 
7B).  

Moreover, GSEA results on Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways revealed 
that most of the gene sets focused on immune-related 
pathways (Supplementary Figure S4), such as 
up-regulated ubiquitin-mediated proteolysis, cell 
cycle and down-regulated nod-like receptor signaling 
pathway, cytokine-cytokine receptor interaction, 
toll-like receptor signaling pathway, cell adhesion 
molecules (CAMs), and natural killer cell-mediated 
cytotoxicity. The GSEA results on cancer-related gene 
sets showed that metastasis samples were 
significantly enriched in several well-known 
cancer-related pathways, such as VEGF, ERB2, JAK2 
and YAP1 (Figure 7C). The results provide clues into 
the in-depth mechanism of metastasis development. 

Constructing PPIs Network 
PPIs data, whose size and color were related to 

the number of interactions and the weighted score of 
the interactions, respectively, of 194 genes in the blue 
module were downloaded from the STRING database 
and visualized by Cytoscape software (Figure 8). 
After applying 12 algorithms in the plug-in 
cyto-Hubba, 44 hub genes were screened out and 
selected for subsequent analysis. Among the 44 hub 
genes, 23 had a frequency of at least 2, the most 
frequent of which were ITGB2, TYROBP, CD163, 
CD74, IGSF6, C1QB, LYZ, MS4A6A, C1QA, S100A8 
and DNMT1. 

Discussion 
With the explosive development of microarray 

and sequencing technology and their decreasing costs, 
we can obtain vast information of genomics, 
proteomics, and metabolomics. However, most omics 
data are only used to identify DEGs, proteins or 
amino acids between diseased samples and normal 
samples or between metastasis and non-metastasis 
samples. A mass of information is ignored with 
simple screening, requiring deep data mining to make 
better use of it.  
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WGCNA is a systems biology method that is 
used to describe the correlation patterns among genes 
across transcriptome samples by a soft-threshold 
algorithm [17]. After clustering highly correlated 
genes into different modules, it correlates the modules 
to clinical traits of interest. In the current study, we 
performed WGCNA to identify 9 modules and found 
that the blue module was highly related to lung 

metastasis status (r = -0.52, P = 2e-04) and the speed of 
lung metastasis (r = -0.5, P = 4e-04) of OS. To identify 
clinically significant genes in the blue module, we 
then performed LASSO Cox regression, which is 
broadly used to construct a regression model of 
survival analysis with high-dimensional data, and 
finally eight genes were screened out.  

 

 
Figure 5. Internal validation of LASSO Cox-derived signature. (A) Histograms showed gene expression level of LASSO Cox-derived genes between OS cell lines and normal 
tissue. (B) Box plots showed that the risk scores were significantly higher in metastasis patients compared to non-metastasis patients in both signatures. (C) ROC curves showed 
great classifying efficacy (AUC = 0.886). (D) Metastasis-free survival analysis showed that the signature could significantly predict poor metastasis-free survival (P < 1e-6). (E) 
Overall survival analysis showed that the LASSO Cox-derived signature could predict poor overall survival (P = 0.003). Data are presented as the means ± SDs. Two-tailed 
unpaired t test: *P < 0.05, **P < 0.01, ***P < 0.001 and ***P < 0.0001, n.s.: no significance. 
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Figure 6. External validation of the LASSO Cox-derived signature. External validation cohort based on TCGA database showed that the LASSO Cox could significantly predict 
clinical outcomes in (A) sarcoma (SARC), (B) cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), (C) lung adenocarcinoma (LUAD), and (D) skin 
cutaneous melanoma (SKCM). 

 

 
Figure 7. Functional annotation of genes in the blue module. (A) Enriched biological processes, cellular components and molecular functions of the blue module. (B) Enriched 
KEGG pathways of the blue module. (C) GSEA results on cancer-related pathways of the blue module. 

 
With these genes, we constructed an eight-gene 

signature, which showed remarkable efficacy in 
distinguishing different metastasis status (AUC = 
0.886, greater than any individual genes) and 
predicting clinical outcome. We also validated our 
results in independent external datasets from TCGA 
database, showing the clinical significance of the 
LASSO Cox-derived signature in SARC, CESC, 

LUAD, and SKCM. In clinical circumstances, if we 
apply the signature to OS patients, we can detect the 
expression levels of specific genes from biopsies or 
surgically procured samples and predict metastasis 
progression. For patients with a high score or at a high 
risk, more frequent follow-ups and active treatment 
may greatly improve their survival and quality of life, 
corresponding with the concept of precision medicine. 
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Figure 8. Protein-protein interactions network of the blue module. The size of genes was related to the number of interactions and the color was related to the weighted score 
of the interactions. 

 
In the signature, some genes have been reported 

participating in tumor genesis and progression. 
ASPM (Abnormal Spindle Microtubule Assembly) 
participates in the self-renewal of gastric stem cells, 
revealing the role of ASPM as a biomarker for gastric 
carcinogenesis [32]. ASPM also supports postnatal 
cerebellar neurogenesis and maintains the growth of 
medulloblastoma [33]. HLA-DRA, α-chain of Major 
Histocompatibility Complex Class II-DR, binds to 
antigen-derived peptides from antigen presenting 
cells (APCs) and serves as an activation signal for 
CD4+ T-cells. Although few researchers have 
determined the in-depth mechanism of HLA-DRA in 
cancer metastasis, M1-type (CD14/HLA-DRA- 
positive) tumor-associated macrophages (TAMs) have 
been found in the OS microenvironment and are 
associated with angiogenesis [11]. Aaron J discovered 
that low expression of HLA-DRA could predict poor 
prognosis in colon adenocarcinoma [34]. LYZ, which 
encodes human lysozyme, is associated with the 
monocyte-macrophage system and enhances the 
activity of immune agents. LYZ is also associated with 
an immune-reactive microenvironment, and high 
expression of LYZ can predict good disease-specific 

survival in advanced classical Hodgkin’s lymphoma 
[35,36]. Among other hub genes derived from PPIs, 
we also found some known oncogenes such as 
DNMT1, S100A8 and MATN2. 

These researches verified that the hub genes 
screened out through WGCNA based on 
high-throughput data were indeed associated with 
tumor metastasis development, some of which even 
showed great efficacy in predicting chemotherapy 
response and prognosis in various cancers. Thus, the 
hub genes not mentioned above may also play 
important roles in metastasis development, calling for 
further experimental validation. 

To obtain insights into the biological relevance of 
these genes in the blue module, we performed 
functional enrichment analysis and found that these 
genes are mainly enriched in immune-related 
pathways and epithelial-to-mesenchyme transition, 
which conformed to the classical process necessary for 
metastasis and suggests a potential mechanism for OS 
metastasis. Furthermore, the GSEA results on 
cancer-related gene sets showed that metastasis 
samples were significantly enriched in several 
cancer-related pathways, such as VEGF, ERB2, JAK2, 
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and YAP1. These results shed light on the in-depth 
mechanism of metastasis development.  

Some limitations exist in the present study. First, 
DEGs are not recommended for WGCNA because the 
diversity of high-throughput data may be lost. 
However, according to others’ opinions, DEGs can be 
included in WGCNA if the expression difference 
between genes is small (15-17). As a matter of fact, 
how to prepare input data for WGCNA is not 
completely determined and what really matters is 
whether the results can be validated in future research 
in cell experiment, animal models and clinical 
practice. Second, we did not obtain independent 
external transcriptome and clinical data of OS patients 
since the incidence of OS is rather low. We look 
forward to cooperating with different hospitals and 
institutes to allow for the long-term follow-up of OS 
patients and to perform necessary gene detection in a 
subsequent study. Further experimental research on 
the biological function of the prognostic gene 
signature and hub genes should be conducted. 

In conclusion, we identified an easy and practical 
eight-gene signature to distinguish different 
metastasis statuses of OS patients and predict clinical 
progression by integrating transcriptome and clinical 
data. WGCNA and LASSO Cox regression were 
combined in osteosarcoma for the first time. 
Validation was performed based on independent 
external data of different cancers from TCGA 
database. Further functional annotation revealed 
enriched immune-related pathways and 
epithelial-to-mesenchymal transition, suggesting a 
role for the tumor microenvironment in metastasis 
development, which could indicate the direction for 
further research. We not only identified an efficient 
multigene signature for predicting lung metastasis 
and prognosis in osteosarcoma, but also created an 
effective protocol to seek for several hub genes in 
high-throughput data by combining WGCNA and 
LASSO Cox regression.  
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