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Abstract 

MicroRNA (miRNA)-34 family (miR-34s), including miR-34a/b/c, is the most well studied non-coding 
RNAs that regulate gene expression post-transcriptionally. The miR-34s mediates the tumor suppressor 
function of p53 in the pathogenesis of breast cancer by targeting different oncogenes. This review focuses 
on the anti-oncogenic regulation of the miR-34s, emphasizing the major signaling pathways that are 
involved in the modulation of miR-34s in breast cancer. Moreover, it highlights how epigenetic 
modification by the p53/miR-34s axis regulates the proliferation, invasiveness, chemoresistance, and 
sternness of breast cancer. A better understanding of the molecular mechanisms of miR-34s will open 
new opportunities for the development of novel therapeutic strategies and define a new approach in 
identifying potential biomarkers for early diagnosis of breast cancer. 
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Introduction 
According to the American Cancer Society 

(http://www.cancer.org), breast cancer is the 
second-leading cause of mortality in female and the 
most frequently diagnosed cancer in the United 
States, with estimated 252,710 new cases and 40,610 
expected breast cancer deaths every year [1]. Among 
these cases, only 20 percent of these cases were 
diagnosed at early stage when the cancer is still 
localized and treatable. Breast cancer is a 
heterogeneous disease that can be classified into 25 
subtypes based on distinct histological and gene 
expression profiles [2, 3]. The etiology of breast cancer 
is still unknown and no potential prognostic 
biomarkers could predict the survival rate of breast 
cancer. This highlights the importance of early 
diagnosis to improve therapy and molecular 
diagnostics of breast cancer [4, 5]. To date, many 
research centers recognized that several miRNAs play 
critical roles in breast cancer initiation, progression, 
and metastasis; thus they are attractive targets for 
therapy supplementing traditional treatments, such as 

surgery, chemotherapy, and radiotherapy. 
MicroRNAs (miRNAs) are in a class of 

endogenous, small, non-coding RNAs 21~23 
nucleotides (nt) in length. MiRNAs are involved  in 
various human cancers and can either modulate as 
oncogenic miRNAs (oncomiRs) or tumor suppressor 
miRNAs. In the cancer cells, most tumor suppressor 
genes are inhibited by the upregulation of oncomiRs 
or expression of proto-oncogenes [6-8]. The functional 
balance between oncomiRs and tumor suppressor 
miRNAs play critical roles in tumor proliferation, 
differentiation, angiogenesis, invasion, metastasis, 
and treatment outcome [9]. The microRNA-34/499 
(miR-34/499) super family was mainly established 
with the discovery of microRNA-34 (miR-34) family 
and miR-499 family as a small single-stranded 
miRNA [10, 11]. The miR-34family consists of three 
closely related members; miR-34b, -34c, and -34a, is 
the most well studied tumor suppressor miRNAs [12]. 
The miR-449 cluster, with highly conserved miR-449a, 
-449b, and -449c, contains secondary structures and 
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sequences similar to the miR-34 family [13]. Both 
miR-34 and miR-449 family were categorized as one 
family of miRNAs because they share the same seed 
sequence and mRNA targets [12]; for the purpose of 
this review, miRNA-34/499 super family will be 
called as miR-34. Corresponding to the 
tumor-suppressive role of miR-449, expression of the 
miR-34 family is down-regulated in a wide range of 
cancers, including lung [14, 15], multiple myeloma 
[16], kidney [17, 18], gastric [19], breast [20, 21], 
colorectal [22], hepatocellular [23], prostate [24], and 
ovarian [25, 26].  

This review summarizes the epigenetic 
mechanisms of miR-34 family members in regulating 
of proliferation, apoptosis, invasion, and metastasis of 
breast cancer cells. Furthermore, we will try to explore 
the possible biomarker roles of miR-34 family for 
diagnosis, prognosis, and therapeutic targets of breast 
cancer. 

Expression, biogenesis, and structure of 
miR-34 family 

The miR-34 family, which contains three 
members, is encoded by two genes located on 
chromosomes 1 and 11 [27]. Within the human 
genome, miR-34b/c shares a common primary seed 
sequence located at one transcription unit on 
chromosome 11q23.1, whereas miR-34a is encoded in 
the second exon of a transcript located on 
chromosome  1p36.22. The mature miR-34a shares 86% 
identity (19/22 nt) with miR-34b and 82% identity 
(18/22 nt) with miR-34c, respectively. The position 2-9 
adjacent at the 5' end (8 nt) is considered the “seed 
region” for all three members (See the Fig. 1a) [27-29].  

Among these members, miR-34a expression 
levels are higher than miR-34b/c, in most human 
cells, except for lung tissue in humans and brain 
tissue in mice. In lung tissues, miR-34b/c is usually 
expressed instead. The biogenesis of miR-34s like 
other miRNAs, is a multistep process. MiR-34 family 
encoding genes are initially transcribed by RNA 
polymerase II or III as long hairpin molecule 
(pri-miRNA) in the nucleus. The pri-miRNA is 
processed by the RNase III DROSHA into a 
stem-loop-structured miRNA precursor molecule 
(pre-miRNA)  (≈70 nt length) [30]. Then, Pre-miR-34s 
are transported to the cytoplasm by active exportin-5 
nucleus transporter. The cytoplasmic biogenesis 
process of pre-miR-34s into mature miR-34 is 
mediated by another human RNase III (DICER); 
resulting in a 20-23 bp RNA duplex consisting of the 
mature miRNA and its anti-sense strand (miRNA*) 
[30]. Finally, one strand of the mature form of duplex 
stand is incorporated into an RNA-induced silencing 
complex (RISC), while the other is degraded. If the 

binding sites on the 3’-UTRs or 5’-UTRs of target 
mRNAs and miR-34 are fully complementary, it may 
lead to mRNA degradation and inhibit target gene 
expression. Conversely, miR-34 family can suppress 
translation or transcriptional activation if only 
partially complementary sequences are present in its 
target genes [28, 31, 32]. The sequence alignment of 
the mature miR-34a, miR-34b, and miR-34c molecules 
were compared in the Fig. 1b. The expression of all 
miR-34s genesis is tightly controlled at the 
transcriptional and posttranscriptional levels by the 
p53 tumor suppressor, ETS domain-containing 
protein Elk-1, signal transducer, activator of 
transcription 3' (STAT3), CpG island methylation, and 
EMT-inducing transcription factors (EMT-TFs, such 
as zinc-finger E-box-binding (ZEB) and basic 
helix-loo-helix (bHLH) families) [27] . It is well 
established that p53 is an important inducers of 
miR-34s expression, which binds to the promoter 
regions of both miR-34a and miR-34b/c [27, 29, 33]. 
Hypermethylation of the CpG islands of miR-34 
promoter directly induced miR-34s silencing [34]. 
Furthermore, any DNA and/or cellular stress damage 
led to the silencing of the miR-34s expression by the 
activation of the p53 network (Fig. 1a). 

Functions  of miR-34 family in normal and 
cancer cells 

The miR-34 family regulates vital biological 
processes such as cell development, metabolism and 
differentiation [35, 36]. For example, during normal 
human bronchial epithelial cell differentiation and 
embryonic central nervous system development, 
miR-34s are upregulated [35, 37]. Specifically, 
miR-34a transcriptionally regulated lineage selection 
and B-cell development in murine bone marrow [29] 
and affected critical developmental checkpoints 
during hematopoiesis [38]; miR-34b/c were involved 
in the differentiation of male primordial germ cells 
into spermatozoa process, as well as in the 
maintenance of embryonic stem cells in an 
undifferentiated state [39].  

In the cancer cells, miR-34a was the first class of 
the miR-34 family in neuroblastoma cancer cells 
recognized as a potential tumor suppressor miRNA 
through integration in TP53 network [27, 33, 40]. All 
three components of the p53 tumor suppressor, p53, 
p63, and p73, are directly and indirectly coordinated 
in the activation of miR-34s family [29, 41]. It had been 
shown that induction of miR-34s by p53 triggered 
apoptosis and cell cycle arrest in a wide range of 
hematological and solid malignant cells. In this 
regard, the miR-34a functions at the core of 
tumorigenic processes known as "apoptomiR" [40].  
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Fig. 1. a) The miR-34 family biogenesis, regulators, and their functions. Genomic structures of the human miR-34a and miR-34b/c loci. The human RNase III enzymes 
are distinctive by the octagonal box. CpG island miR-34s promoter hypermethylation induces miR-34s silencing that is dominant over its transactivation by oncogenic 
activations, DNA damage, and any cellular stress damage. b) Sequence alignment of the mature miR-34a, miR-34b, and miR-34c molecules. The seed sequences and 
identical nucleotides are show in underline and asterisks indicate markers, respectively. White and green boxes represent exons and miR-34 family hairpins on the 
genome, respectively. CpG islands are represented by hatched box. Methylations and un-methylations are marked by the black and white cycle, respectively. Red 
triangle and rhombus indicate the posttranscriptional modifications, respectively. 

 
Ectopic expression of the miR-34s can antagonize 

many different oncogenic pathways in cancer cells, 
including cell cycle control, proliferation, metastasis, 
and apoptotic pathways [21, 40]. MiR-34s were 
significantly downregulated in many human breast 
cancer cells by affecting numerous oncogenes and 
cancer pathways. MiR-34a levels were more than 
three folds lower in triple negative breast cancer cells 
(TNBCs) and mesenchymal breast cancer cell lines in 
comparison to normal Her-2+ cell lines [20, 27, 33]. 
This downregulation was related with p53 mutation, 
loss of heterozygosity, and hypermethylation of the 
neighboring CpG islands [42, 43]. Interestingly, point 
mutations in miR-34s genes were found in most breast 
cancer cells, leading to down-regulated expression of 
the miR-34s in these cancer cells. Remarkably, most 
mutations  were found in the binging site of the p53 
protein and CpG rich genomic region [44-46].  

The target genes of miR-34s in breast 
cancer 

The tumor suppressors of miR-34 members 
control an analogous set of target genes with more 
than 82% homology [21, 40]. Table 1 sorts the main, 
direct miR-34s targets in breast cancer identified by 
bioinformatics methods and cellular experiments in 

human breast cancer tissue and cell lines. The miR-34s 
regulate their targets via binding of seed-sequence (7 
nt) located in their 5′- or 3′-UTR of the target mRNA. 
Although many genes are identified as targets of 
miR-34s by target prediction tools (Target Scan 
[http://www.targetscan.org; release 5.1), PicTar 
[http://pictar.mdc-berlin.de), and miRanda 
[http://www.microrna.org)) [47], a few of them were 
confirmed by in vitro and in vivo study (Fig. 2) [29, 40]. 
The luciferase reporter assay, biotinylated miRNA, 
comparative genomics, and hybridization are 
fundamentally different methods that many 
researchers used to identify miR-34s targeted genes 
and their tumor suppressive roles in different cancer 
cells [27]. Among the different high-throughput 
technologies, microarray, RNA-sequencing, and 
next-generation sequencing are now first array 
approaches in prediction of miRNA targets [48-51]. 
Technically advanced and well-stablished microarray 
platforms can now be evaluated by distance 
bioinformatics tools. As sorts in Table 1, most of the 
identified targets encoded factors involved in G1 cell 
cycle progression, apoptosis, proliferations, and 
invasion of breast cancer cells [52, 53], which are 
similarly illustrated in the Fig. 2. 
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Table 1. Main current miR-34s targets in breast cancer. 

Cellular 
Process 

Target 
gene 

MiR-34s 
member 

mRNA target/hsa-miR-34a alignment * Biological effect Validated 
methods 

Cell lines SMS Ref. 

M
et

as
ta

si
s 

/W
nt

 S
ig

na
lin

g 

AXL a 5'-GGAUCCAAGCUAAGCACUGCCA-3'  
                                                || ||||| 
3'-UGUUGGUCGAUUCUGUGACGGU -5' 

Inhibition of proliferation, 
migration, and invasion 

Luc. reporter 
(Mut), WB, qPCR 

BRC Y [54, 55] 

Far-1 a/c 5'-UAACCCCUUCCAGAUCACUGCCA  -3'  
                                                   || ||| |  | 
3'-CGUUAGUCGAUUGAUGUGACGGA-5' 

Inhibition of invasion and 
metastasis 

Luc. reporter, WB, 
qPCR 

BRC Y [56] 

WNT1 a/b/c 5'-UGGAAUCUGACAUAAGCUGAUUG-3'  
                                                 | ||| | | | 
3'-UCCCGUCAUAUGAACGACUAAC-5' 

Inhibition of Wnt 
signaling 

Luc. reporter, WB, 
qPCR 

BRC Y [57] 

WNT3 a/b/c 5'-CUGGGAACCGCCCUCCUGAUUAA-3'  
                                                  || ||| | 
3'-UCCCGUCAUAUGAACGACUAAC-5' 

Inhibition of Wnt 
signaling 

Luc. reporter, WB, 
qPCR 

BRC Y [57] 

ZEB1 a 5'-AGAGGUUAAAGGAAGCUGAUUA-3'  
                                                | |||| | |  
3'-UCCCGUCAUAUGAACGACUAAC-5' 

Inhibition of EMT and 
invasion 

Luc. reporter 
(Mut), WB, qPCR 

BRC/BC Y [20] 

SNAI1 a/b/c 5'-CAGAGCUGGGAUGCUGCU-3'  
     ||    |||||                  ||| |  | 
3'-UGUUCGAUUCUGUGACGGU-5' 

Inhibition of EMT Luc. reporter 
(Mut), WB, qPCR 

BRC/BC Y [58] 

LMTK3 a 5'-TGTGGATGACGGCGCCACTGCCA-3'  
                                             ||||||||| 
3'-UGUUGUCGAUUCUGUGACGGU-5' 

Inhibition of proliferation 
and invasion 

Luc. reporter 
(Mut), WB, qPCR 

BC Y [53] 

TWIST1 a 5'-AUUUUUUAUUUCAUUCUGAUUAU  -3'  
                        | | |                   ||| | |  | 
3'-UCCCGUCAUAUGAAC-GACUAAC-5' 

Inhibition of EMT and 
invasion 

Luc. reporter 
(Mut), WB, qPCR 

BRC/BC Y [20] 

A
po

pt
os

is
/P

53
 P

at
hw

ay
 Bcl-2 a 5'-UCGAAUCAGCUAUUUACUGCCA -3'  

                                                   | || |||| 
3'-UGUUGGUCGAUUCUGUGACGGU-5'd 

Inhibition of proliferation 
and apoptosis  

WB, qPCR BRC/BC N [53, 59, 60] 

FasR a 5'-AGGGUCUUCUGACCUCUGAUUAG  -3'  
                                                    |||||| 
3'-UCCCGUCAUAUGAACGACUAAC-5' 

Inhibition of proliferation 
and G1 -arrest,  

Luc. reporter, WB, 
qPCR 

BRC Y [61] 

SIRT1 a 5'-CCAGCUAGGACCAUUACUGCCA-3'  
                                                 ||||||  | 
3'-UGUUGGUCGAUUCUGUGACGGU-5' 

G1/S-arrest and 
apoptosis, Inhibition of 
proliferation 

WB, qPCR BRC/BC N [60, 62] 

C
an

ce
r S

te
m

ne
ss

 

CD24 a 5'- AGUAAAUCUUUUACAACUGCCU-3'  
                                                     |||| | | 
3'- UGUUGGUCGAUUCUGUGACGGU-5' 

Inhibition of 
differentiation and 
positive regulation of 
p53-cell cycle 

Luc. reporter, WB, 
qPCR 

BRC Y [63] 

NOTCH1 a 5'-AUUUUACACAGAAACACUGCCU-3'  
                                                 | | || | || 
3'- UGUUGGUCGAUUCUGUGACGGU-5' 

Apoptosis and inhibition 
of EMT, proliferation, and 
invasion 

Luc. reporter 
(Mut), WB, qPCR 

BRC/BC Y [20, 64, 65] 

NOTCH4 c   5'-GUCCCCAUAAUAAAGCUGAUUU-3'  
                                                 |||| | | | 
3'-UCCCGUCAUAUGAACGACUAAC-5' 

Inhibition of  Notch 
signaling and senescence 

Luc. reporter 
(Mut), WB 

BRC N [66] 

HDAC1 a 5'-AAGUGAGCCAAGAAACACUGCCU-3'  
                                                  ||| | | || 
3'- UGUUGGUCGAUUCUGUGACGGU-5' 

Inhibition of tumor 
progression and cell 
proliferation 

Luc. reporter 
(Mut), WB, qPCR 

BRC Y [53, 67, 68] 

HDAC7 a 5'-CUGGGACCCCUCGGCCACUGCCC-3'  
                                                   ||||| | | 
3'-UGUUGGUCGGAUUCUGUGACGGU-5' 

Inhibition of tumor 
progression and cell 
proliferation 

Luc. reporter 
(Mut), WB 

BRC Y [67] 

C
el

l C
yc

le
 

CDK6 a/b 5'-UAUAACUACAUAUUGACUGCCA-3'  
                                                  ||| ||| | 
3'-UGUUGGUCGAUUCUGUGACGGU-5' 

G1-arrest,inhibition of 
invasion and metastasis 

Luc. reporter, WB, 
qPCR 

BRC/BC Y [69] 

MDM4 a 5'-AGAUUUUUUUUACUCACUGCCA-3'  
                                                  ||| ||| | 
3'-UGUUGGUCGAUUCUGUGACGGU-5' 

Positive regulation of 
p53-cell cycle 

Luc. reporter 
(Mut), WB, qPCR 

BRC Y [52, 53] 

LMTK3 a 5'- GUGGAUGACGGCGCCACUGCCA-3'  
                                                 ||| ||| | 
3'- UGUUGGUCGAUUCUGUGACGGU-5' 

G1-arrest and inhibition of 
proliferation  

Luc.  reporter, WB BRC Y [53] 

O
nc

og
en

ic
 T

ra
ns

cr
ip

tio
n MET b/c 5'-UCCAAUGGUUUUUUCACUGCCU-3'  
                                                 ||| ||| | 
3'-UGUUGGUCGAUUCUGUGACGGU-5' 

G1-arrest,inhibition of 
proliferation and invasion 

Luc. reporter 
(Mut), WB, qPCR 

BRC Y [70] 

Msi1 a 5'-GGCCAAGGCCCACCCACUGCCA-3'  
                                                ||| ||| | 
3'-UGUUGGUCGAUUCUGUGACGGU-5' 

G1/S-arrest and inhibition 
of proliferation 

Luc. reporter 
(Mut), WB, qPCR 

BRC Y [71] 

Src a 5'-GAGGACGUGUUACCCACUGCCA-3'  
                                                ||| ||| | 
3'- UGUUGGUCGAUUCUGUGACGGU-5' 

Inhibition of progression 
and regulation of p53-cell 
cycle 

Luc. reporter 
(Mut), WB, qPCR 

BRC Y [63] 

* The alignments between the hsa-miR-34 family and the 3'-UTR of validated targets are reported above. The miR-34s species shown to bind or regulate the respective targets 
are listed in the third column. Overall, the alignment with miR-34a and miR-34b are as shown and the miR-34s seed region is highlighted by gray shading and bold letters. 
Vertical lines between both sequences indicate perfect Watson–Crick base pairs. The indicated, putative miR-34-binding sites were recognized, using bioinformatics analysis 
by the following target prediction tools: TargetScan (http://www.targetscan.org; release 5.1), PicTar (http://pictar.mdc-berlin.de) and miRanda 
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(http://www.microrna.org). This table shows the publication identified a seed-matching sequence (SMS) in the 3'-UTR. 
Abbreviation: AXL, AXL receptor tyrosine kinase; Fra-1, Fos-related antigen 1; IL-6R, Interleukin 6 receptor; WNT1,3, Wingless-related MMTV integration site member 1,3; 
ZEB1, Zinc finger binding protein 1; SNAI1, Snail family transcriptional repressor 1; TWIST1, Twist family BHLH transcription factor 1; Bcl-2,  B-cell leukemia/lymphoma 2; 
FasR, FAS receptor; SIRT1, Sirtuin 1, Silent information regulator 1; MDM4, MDM4 as P53 regulator; C-MYC, C-myc  myelocytomatosis viral oncogene homolog; CD24, 
Cluster of differentiation 24; NOTCH 2,4, Notch homolog 2,4; CDK6, Cyclin-dependent kinase 6;  LMTK3, Lemur tyrosine kinase 3; E2F3, E2F transcription factor 3; Met, Met 
proto-oncogene; Msi1, Musashi RNA binding protein 1; SRC, SRC Proto- Oncogene; BRC, Breast cancer cell line; BR, Human breast cancer sample; SMS, seed-matching 
sequence; luc. reporter, Luciferase reporter assay; mut, Mutagenesis of the SMS in the 3'-UTR- reporter construct; qPCR, Quantitative real-time PCR; WB, Western blotting 
analysis. Y, Yes; N, No.  

 

 
Fig. 2. Cellular outcomes associated with miR-34s-induced gene silencing in cancer cells. The increased levels of any members of miR-34s re-enforced the 
cancer-related pathways in response to cell cycle arrest, proliferation, metastatic, stemness, apoptosis, and chemo drug resistance in breast cancer. 

 

Molecular mechanisms of miR-34s in 
breast cancer 
 The tumor suppressor and inducing of 
apoptosis 

In the last decade, miR-34s emerged as critical 
regulators of apoptosis by multitudes of signaling 
pathways [42]. MiR34s, as regulation of multiple 
genes, is responsible for cancer cell death and G1/S 
cell cycle  arrest in response to any oncogenic triggers 
at the posttranscriptional level [27, 29]. As an 
ApoptomiR, re-introducing mimics of miR-34s 
inhibits numerous cancer cell types and initiates the 
apoptotic pathways [28, 33]. In the view of the large 
tumor suppressor deregulated targets, we sought to 
narrow down the number of targets related to 
apoptosis. It is generally accepted that miR-34a has 
directly trigged p53-induced apoptosis in breast 
cancer. Pro-apoptotic functions of miR-34a in breast 
cancer interplayed with anti-apoptotic proteins such 
as Bcl-xL and Bcl-2 (Table 1) [29, 53, 59] . Remarkably, 
Gou et al. confirmed that miR-34a is a main member of 
miR-34 family that triggers p53-induced apoptosis by 
directly repressing Bcl-2 in the TNBC and MCF-7 cell 
lines [29, 72]. Similarly, SIRT1 and NAD+-dependent 
protein deacetylase class is another miR-34a target in 
p53/miR-34-induced apoptosis [56, 60, 62]. In detail, 
repression of SIRT1 by miR-34a in breast cancer cells 
leads to reduction of p53 deacetylation. 
Deacetyled-p53 more actively induces G1/S cell cycle 

arrest or apoptosis. Therefore, SIRT1, and 
p53/miR-34a forms a positive feedback axis to inhibit 
proliferation that inducts tumor suppression process 
by triggering of the p53-meditated apoptosis network 
[60, 62]. Furthermore, FasR can be extracellular 
anti-apoptotic targets of miR-34a, presumably 
resulting from a reduction of cancer cell proliferations 
and blocked apoptotic signaling (Fig. 2) [61]. As 
shown in the Fig. 2, the miR-34s family interferes with 
apoptotic properties across a broad spectrum 
of  pro-apoptotic and oncogenes regulators (TP53, 
NOTCH1, and SMAD4). The upstream apopto-
tic  signaling, such as Wnt and TGF-β cascade, are 
involved in the miR-34-apoptotic related pathways in 
metastatic breast cancer (MBC) [20, 56, 64-66, 73]. 
Consequently, overexpression of the pro-oncogenes 
and particular miR-34s target proteins revealed 
regulation of p53-apoptosis in breast cancer patients 
[27]. Increasing progress in cancer biology research 
has found several cell cycle related gene targets of 
miR-34s  , such as LMTK3, MDM4, CDK6 [52, 53, 69]. 
These evidences  suggested that important role of 
ApoptomiRs may have parts in maintaining balance 
between cell cycle and apoptosis [74, 75]. Generally, 
miR-34a functions as an ApoptomiR in breast cancer 
and reported for other cancers. However, the detailed 
roles of miR-34b/c in breast cancer need to be 
confirmed by more substantial and comprehensive 
research.  
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The Reduction of chemoresistance  
Breast cancer patients who do not respond to 

chemotherapy usually have a low expression of 
miR-34s. Ectopic miR-34a expression reduces the 
resistance to chemo drugs such as doxorubicin, 
docetaxel, Adriamycin, and 5- fluorouracil (5-FU) [60, 
64, 65, 76]. MiR-34a was considerably upregulated in 
HDAC1/7-depleted breast cancer cells. MiR-34a- 
HDAC1/HDAC7-HSP70 K246 crosstalk is identified 
as a novel molecular signature predictive of therapy 
resistance [77]. The targeting of histone deacetylases 
(HDACs) with miR-34s is a potential anti-cancer 
therapy, resulting in the reduction of the chemo 
resistance of breast cancer and increase in the chemo 
drug efflux [53, 67, 68]. Also, miR-34a level 
significantly is reduced by methylation of the 
promoter region of the miR-34a gene in radio 
sensitivities of breast cancer cells. In detail, the 
MDA-MB-231 cell line (with low miR-34a level) is 
significantly more sensitive to radiation than normal 
human mammary epithelial cells (HMECs, with high 
miR-34a level). This approach attended earlier reports 
that had suggested targeted-specific genes silencing 
after chemotherapy in breast cancer patients [56, 60, 
64, 65, 76]. For example, NOTCH1, Bcl-2, CCND1, 
FRA1, and SIRT1 are the targets of miR-34a in a 
combination treatment of miR-34a with 5- FU and/or 
docetaxel (Fig. 2). Remarkably, restoration of miR-34a 
sensitized MCF-7 breast cancer cells to 5- FU and 
docetaxel suggested this can be a useful therapy 
approach for chemo drug resistant breast cancer [56, 
60]. The miR-34 family roles in radiation-induced cell 
death in breast cancer cells are still unknown. Hence, 
further research is needed to complete the clinical 
usage of miR-34s as therapeutic targets to overcome 
chemoresistance in breast cancer. 

Inhibition of proliferation , invasion, and 
metastasis 

MBC is an end-stage, deadly aggravation of 
breast cancer with complex mechanisms, including 
local invasion, transport, extravasations, and 
colonization. EMT-TFs (such as zinc-finger E-box- 
binding  family, such as TWIST1, SLUG1, SNAIL1 and 
ZEB1) are key factors that accelerate the progression 
of non-invasive to invasive breast cancer (IBC) by 
several transcriptional repressors of Vimentin, 
E-cadherin [67, 78-80]. Epigenetically, miR-34s/EMT- 
TFs axis plays inhibition roles of MBC migration 
and  invasive at in vivo and in vitro levels [42, 81-83]. 
MiR-34s are often down-regulated in lymph node 
metastases of breast cancer cells as comparted normal 
breast by binding to EMT-TFs in TNBC cells. 
Overexpression of miR-34a significantly inhibits 
EMT-TFs, like TWIST1, and ZEB1 in TNBC [20, 81]. 
Ultimately, the above findings strongly propose why 

miR-34a/EMT-TFs contributes to MBC progression 
and identification of novel therapeutic targets of stage 
ІІ/ІІІ of breast cancer progress. Incredibly, migration 
and invasive target crucial genes, such as MYC, MET, 
and Fra1 involved mainly in the  apoptotic related 
pathways in MBC [29, 56, 80, 84].  MiR-34a silenced 
c-SRC and attenuated tumor growth and invasion in 
TNBC in vitro and in vivo [85]. Meanwhile, 
the  published evidence is limited and further studies 
are needed for illustrating the exact cellular functions 
of miR-34-induced gene silencing.  

Regulation of the breast cancer stem cells 
Breast cancer stem cell (BCSCs) are the potential 

stem cells of new tumor forms characterized by cell 
surface markers ESA+, CD44+, and CD24- [86, 87]. 
Delivery of miR-34s had significant improvement in 
patient outcomes with successful targeting of 
CD44+/CD24low BCSCs [80, 88]. MiR-34a targets 
CD44, Sp1, and MDM2 as a cancer cell differentiation 
marker, resulting in impaired tumor growth and 
decreased metastases in mouse models of BCSCs [66]. 
Consistently, ectopic expression of miR-34c in BCSCs 
is mediated by CpG islands-methylation in the 
promoter region of miR-34c gene, which reduces 
DNA binding activities of Sp1 [66, 87]. Yu et al. 
showed that the expression of miR-34c is lower in 
CD44+ BCSCs when compared to CD44 non-stem 
cells, resulting in impaired tumor growth and 
decreased metastases in breast cancer [66]. From this 
evidence, miR-34c’s ability to target BCSCs proposes 
that they may have significant therapeutic potential, 
due to therapeutic metastasis and cancer relapse with 
elimination of all BCSC populations.  

Diagnostic accuracy and survival 
potential of miR-34s  

MiR-34s members are down-modulated in 
metastatic lymph node and IBC tissue samples with a 
high aggregative index, proposing that a deficiency of 
miR-34s is related with a poor prognosis. In this 
regard, the recent comprehensive systematic review 
and meta-analysis study showed the miR-34 family as 
a potential diagnostic biomarker in radiation-induced 
breast cancer patients [89]. The literature review 
indicated that serum and plasma levels of miR-34a 
were related with histological grades of breast cancer. 
However, other studies described no significant 
association between serum miR-34a expression and 
clinicopathological features, such as lymph node 
metastasis and hormone receptors [90, 91]. 
Nonetheless, our  systematic review and meta-analysis 
confirmed the diagnostic value of miR-34a in 
detecting of breast cancer with 85.50% sensitivity and 
70.50% specificity [92, 93]. Furthermore, reported 
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documents have evidences for miR-34a as an accurate 
diagnostic biomarker in tissue-based samples of 
breast cancer [67, 79]. Interestingly, miR-34a, more 
deep-rooted than the other two miR-34 family 
members, is a new class of non-invasive urine-based 
biomarker for diagnosis of breast cancer, with 
averagely 61.0% sensitivity and 79.7% specificity [90, 
91, 94]. This creates great interest in the 
early-noninvasive, breast cancer detection capabilities 
as a novel target for tumor suppression. Taken 
together, these results comprehensively showed that 
miR-34a could be a promising and novel non-invasive 
biomarker in the early diagnosing of patients with 
breast cancer. It is clear that profiling all members of 
miR-34s need early stage diagnosis and the 
determination of therapeutic prognosis of breast 
cancer [95-97]. The Fig. 3 shows the survival 
correlation of all members of miR-34s in human breast 
cancer, according the online dataset [98, 99]. This 
figure shows the lower expression of miR-34a/b were 
associated with poor outcomes in breast cancer, 
verifying its role as tumor suppressor biomarkers 
(Fig. 3A and 3B, respectively). Downregulation of 
miR-34c was associated with poor outcomes in breast 
cancer patients with short overall survival (Fig. 3C). 
Undoubtedly, well-designed large-scale, matched 
case-control studies are required to find intervention 
points of the miR-34s in different types of breast 
cancer [93, 100, 101].  

Therapeutic promising of miR-34s  
MiR-34s are the first class of tumor suppressor 

miRNA mimic therapy. Replacing synthetic miR-34s 
mimics revealed an experimental strategy for the 
treatment of solid tumors and hematological 
malignancies [27, 28, 102]. The miR-34a successfully 
passed the phase I/II of multicenter clinical trial 

(MRX34, NCT01829971) for patients with 
unrespectable primary liver cancer, lymphoma, and 
lung cancer [103]. Also, the MRX34, a mimic of 
naturally occurring miR-34a encapsulated in 
liposomal nanoparticle formulation, is in a phase ІІ 
clinical trial of liver cancer [104]. Retroviral expression 
vectors are cloned individual human miR-34 family 
into a derivative of the murine stem cell virus that 
mostly expresses luciferase or green fluorescent 
protein [28]. Besides many in vivo and in vitro studies, 
low efficacy in delivery, non-specific biodistribution, 
low specific, poorly cellular uptake, and high side 
effects are the main challenge in miRNA biased 
therapy of breast cancer [24, 105-108]. Fig. 4 
summarizes the steps from the research to the clinical 
application that should be considered for miR-34s 
therapeutic approach in breast cancer, in term of 
biological, structural, and clinical settings. The 
chemical modifications, nano-delivery, and/or 
co-delivery of miR-34s mimic's therapy are the most 
used research approach for the bio-pharmacists 
research centers (Fig. 4). In this regard, Bader et al 
systematically compared the administration of the 
treatment by intravenously injecting miR-34a delivery 
in mouse models of lymphoma, melanoma, breast, 
prostate, non-small cell lung, and pancreatic cancers 
[102]. They found that xenograft breast cancer mice 
had a 38% repression of tumor growth in comparing 
with the control group [102]. Hui et al. showed that 
orally administration of flavonoid compound 3, 
6-dihydroxyflavone reduces MNU-induced breast 
carcinogenesis, with overexpression of miR-34a 
associated in rats' model [109]. Xie et al. indicated that 
nanoparticle delivery of miR-34a eradicated 
long-term-cultured BCSCs by targeting C22ORF28 
[87]. 

 

 
Fig. 3. Survival correlations of miR-34 family in breast human cancer datasets. A dataset kaplan-meier survival analysis for the relationship between survival time and 
global expression profiling of miR-34a (a), miR-34b (b), and miR-34c (c) signature in high-risk ER+ breast cancer from patients receiving adjuvant Tamoxifen 
mono-therapy was performed by using online data set tools of MIRUMIR [98] and Kaplan-Meier [99]. 
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Fig. 4. Different challenging areas of miR-34s therapeutic approach in breast cancer. This figure show different stepwise settings for miR-34a therapy in breast cancer. 

 

Co-delivery with chemo drugs 
It is well established that co-delivery of miR-34s 

with the chemo drugs had interesting synergetic 
effects upon breast cancer, where it could use as a 
biomarker for chemotherapeutic response. In one 
comprehensive study, Frères et al. recognized that of 
188 circulating miRNAs assessed in the plasma of 25 
breast cancer patients, miR-34a is significantly 
increased after neoadjuvant chemotherapy [110]. This 
finding introduces miR-34a as a biomarker for 
chemotherapeutic response [102]. Tissue-specific 
delivery and cellular uptake are another challenge of 
miR-34a-based therapy. To achieve sustained target 
inhibition of tumors in response to oligonucleotides, 
nanotechnology-based formulations of miRNA are 
the one of the best options for researchers [111]. In an 
interesting report, Deng et al. claimed that co-delivery 
of miR-34a with doxorubicin in hyaluronic acid 
chitosan nanoparticles significantly increased the 
anti-tumor effects of doxorubicin in the TNBCs [112]. 
Misso G et al. discussed the substantial benefits of a 
new therapeutic concept based on nanotechnology 
delivery of miRNA mimics in their review [40]. 
Lipid-based formulation of nano-carriers, like 
hyaluronic acid and chitosan, are most investigated 
systems for miR34a-based therapeutic delivery, 
indicated in a study where Wang et al. deigned against 
the TNBC samples [113]. In this regard, Zhang et al. 
introduced the core-shell nanocarrier co-loading with 
docetaxel and miR-34a as a new nano-platform for the 
combination of insoluble drugs. This report shows 
that a combination of miR-34a and docetaxel achieves 

synergistic therapeutic effects in MBC treatment, due 
to the highly permeable endothelium of the capillaries 
and the possibility of passive accumulation of the 
drug in breast cancer tissues. The co-delivery of 
miR-34a and docetaxel in nano-carriers suppressed 
the apoptosis pathways and tumor cell migration by 
targeting of Bcl-2 in the 4T1 breast cancer cells [59]. In 
line with this work, the deigning of miR-34a can 
sensitize a panel of breast cancer cell lines with 
another breast cancer compounds, indicating that the 
new formulations of miR-34a is more suitable for 
therapy of patients with MBC. 

Co-delivery with natural compounds   
Co-delivery of mir-34s with the natural 

compounds from dietary sources has a valuable 
experimental strategy for treatment of solid tumors 
like breast carcinoma. Co-delivery of miR-34a with 
Thymoquinone (TQ), a potential small molecular 
component of Nigella sativa, enhanced inhibition of 
breast cancer metastasis in vitro [20]. For the first time, 
this report had shown that the co-delivery of 
miR-34a+TQ was able to inactivate the downstream of 
the EMT signaling pathway by directly targeting 
TWIST1 and ZEB1 [111, 114-116]. In total, 
re-expression of miR-34s and replacement therapy 
using miR-34s mimics strongly inhibited cell 
proliferation, cell cycle progression, self-renewal, 
EMT, and invasion in breast cancer cell lines [31]. All 
findings noted in above, making miR-34a a promising 
therapeutic agent for patients with these diseases [27, 
57]. 
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Further directions and changes 
Despite extensive studies on detection and 

therapy of breast cancer, lack of a proper diagnosis 
and treatment accuracy is major problem for medical 
researchers. Novel methods should be proposed 
where miR-34s-based cancer therapy is designed to 
target more than one miRNA in breast cancer, which 
depends on the availability of a clinically relevant 
delivery system [84, 117]. Co-delivery with the 
common chemo drugs, natural component/chemical- 
modifying drugs, and mimic therapy of miR-34s such 
as DNA methylation inhibitors and HDAC inhibitors 
have shown clinical promises for breast cancer 
therapy (Fig. 4). However, there are some questions 
that need to be addressed. MiR-34s are therapeutic 
targets acting through the entire gene regulatory 
networks and complex's regulatory cascades. We 
should consider potential side effects for clinical 
applications using miR-34s-based drugs. Indeed, 
further studies are necessary to develop new 
miR-34s-based drugs that specifically affect the CpG 
islands promoter region of miR-34s only to reduce the 
side effects. Therefore, the major challenges and 
assessment to tackle are: (i) efficacy in appropriate of 
delivery of miR-34s at in vivo or in vitro models of 
breast cancer, (ii) miRNA biodistribution, and (iii) 
preliminary biosafety. The potential usefulness of 
miR-34s-based therapy in breast cancer needs more 
research to find epigenetically mechanisms of this 
noncoding RNA in diagnostic/therapeutic tools of 
breast cancer.  

 Conclusions 
This review highlights roles of miR-34 family 

members in tumorigenesis, apoptosis, metastasis, 
invasion, and chemoresistance of breast cancer by 
regulating of numerous proto-oncogenes. It is 
relevant to mention that some miR-34 members, like 
miR-34a and miR-34c, have independent protective 
effects on prognosis of breast cancer patients, which 
are the therapeutic candidates of breast cancer 
patients in the future. In addition, the possibility of 
nano-delivery of miR-34s will be useful in targeting of 
breast cancer cells. Meanwhile, laboratory investiga-
tions should continue for better understanding of 
molecular mechanisms of miR-34s to develop more 
convenient diagnostics, prognostics, and treatment of 
breast cancer. 
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