

Figure S1: GO and KEGG analysis of the target genes of hsa-miR-221.

Notes: GO enrichment of target genes in (A) biological process ontology, (B) molecular function ontology and (C) cellular component ontology.

(D) Significantly enriched pathway terms of the target genes.

В

Figure S2: GO and KEGG analysis of the target genes of hsa-miR-29c.

Notes: GO enrichment of target genes in (A) biological process ontology, (B) molecular function ontology and (C) cellular component ontology.

(D) Significantly enriched pathway terms of the target genes.

А

Figure S3: Volcano plot of the aberrantly expressed mRNAs between HCC tissues and normal liver tissues.

Notes: Red dots indicate high expression and green dots indicate low expression of miRNAs. Black dots show the miRNAs with expression of $|\log_2 FC| < 1$. The X axis represents an adjusted FDR value and the Y axis represents the value of $\log_2 FC$. Aberrantly expressed miRNAs were calculated by edgeR R. Altogether, 3847 high and 1048 low expressed miRNAs were achieved. This volcano plot was conducted by the ggplot2 package of R language.

Figure S4: ROC curves to compare the diagnostic accuracy between the miRNA combination and the 7-miRNA classifier of *Lin et al.* Notes: The X axis shows false positive rate, presented as "100%-Specificity%". The Y axis indicates true positive rate, shown as "Sensitivity%". These curves were provided by GraphPad Prism 6.

Dataset	Platform	Experiment type	Number of genes in original study	Number of genes used in this study	Expression type
GSE12717	GPL7274	Non-coding RNA profiling by array	347	313	log2-transformed
GSE10694	GPL6542	Non-coding RNA profiling by array	121	110	log2-transformed
GSE74618	GPL14613	Non-coding RNA profiling by array	13854	2	log2-transformed
TCGA-LIHC(miRNA)	NA	High throughput sequencing	1881	2	BCGSC
TCGA-LIHC(mRNA)	NA	High throughput sequencing	17793	4895	HTSeq-Counts

 Table S1 Information of 5 datasets used in this study

		-
miRNA	Log FC	P Value
hsa-miR-222	2.491835	0.000312
hsa-miR-378	-2.5645	0.000379
hsa-miR-422a	-2.61368	0.001059
hsa-miR-25	1.949887	0.001366
hsa-miR-362	1.790857	0.001448
hsa-miR-301	2.156216	0.001594
hsa-miR-18b	1.898096	0.001611
hsa-miR-520a	-2.31525	0.001677
hsa-miR-93	2.217326	0.003224
hsa-miR-221	1.887786	0.004491
hsa-miR-424	-3.49307	0.005137
hsa-miR-491	2.380884	0.005531
hsa-miR-139	-2.43037	0.006522
hsa-miR-18a	1.550395	0.006919
hsa-miR-184	-2.6436	0.007052
hsa-miR-195	-2.16606	0.007289
hsa-miR-106b	1.929812	0.007399
hsa-miR-499	-1.79363	0.008043
hsa-miR-126*	-2.57251	0.008434
hsa-miR-223	-1.96291	0.009474
hsa-miR-224	4.666059	0.009586
hsa-miR-299-5p	1.52338	0.011292

 Table S2 Significantly differentially expressed miRNAs of screening datasets GSE12717

hsa-miR-335	-1.70856	0.012899
hsa-miR-497	-1.8116	0.013861
hsa-miR-520f	-3.36844	0.013892
hsa-miR-9	1.72739	0.016631
hsa-miR-133a	-1.82079	0.016835
hsa-miR-105	-1.03203	0.019724
hsa-miR-210	1.827347	0.021065
hsa-miR-422b	-3.51606	0.022023
hsa-miR-452	3.842516	0.024444
hsa-miR-450	-1.30479	0.025978
hsa-miR-29c	-2.27737	0.03304
hsa-miR-346	-1.13176	0.033247
hsa-miR-100	-1.8959	0.033891
hsa-miR-203	-1.75096	0.035834
hsa-miR-370	1.481095	0.036387
hsa-miR-452*	2.621289	0.037074
hsa-miR-520c	-2.53422	0.038798
hsa-miR-125b	-2.3884	0.038951
hsa-miR-189	-1.26582	0.041251
hsa-miR-106a	1.189188	0.041355
hsa-miR-302a	-1.28387	0.041961
hsa-miR-101	-1.82946	0.041984
hsa-let-7e	-1.65266	0.042728
hsa-miR-199a	-2.36837	0.045643
hsa-miR-217	2.646149	0.046473

hsa-miR-340	-1.73691	0.04666	
hsa-miR-17-5p	1.080435	0.047621	
hsa-miR-216	2.267764	0.04939	
			_

Abbreviations: FC: fold change

		-
miRNA	Log FC	adj.P value
hsa-miR-221	2.665307	5.11E-11
hsa-miR-520f	-1.19342	8.42E-10
hsa-miR-520d	-1.15423	8.42E-10
hsa-miR-422a	-1.03471	1.36E-09
hsa-miR-222	2.385102	1.36E-09
hsa-miR-101	-2.10304	3.77E-09
hsa-miR-29c	-1.84006	2.17E-08
hsa-miR-25	1.690017	2.23E-07
hsa-miR-424	-1.63196	3.03E-07
hsa-miR-34a	1.468384	3.18E-07
hsa-miR-188	-1.52903	3.57E-07
hsa-miR-191	1.637212	6.91E-07
hsa-miR-15b	1.763118	7.69E-07
hsa-let-7i	1.058211	7.98E-07
hsa-miR-103	1.115363	2.54E-06
hsa-miR-148a	-1.29407	3.40E-06
hsa-miR-30d	1.166132	1.85E-05
hsa-miR-26b	-1.1027	0.000132
hsa-miR-93	1.128434	0.000155
hsa-miR-215	-1.4757	0.000156
hsa-miR-181a	1.321599	0.000199
hsa-miR-29b	-1.06747	0.000242

 Table S3 Significantly differentially expressed miRNAs of training dataset GSE10694

hsa-miR-106b	1.270324	0.000267
hsa-miR-342	1.24591	0.000343
hsa-miR-451	-1.47535	0.00046
hsa-miR-150	1.115177	0.003204
hsa-miR-202	-1.00898	0.023244

Abbreviations: FC: fold change

 Table S4 Target genes of hsa-miR-221 and hsa-miR-29c

miRNA	Target gene
hsa-miR-221	ARF4 ^[1] , ARID1A ^[2] , ARNT ^[3] , CBFB, CDKN1B ^[4] , CTCF ^[5] , EIF5A2, ESR1 ^[6] , FOS ^[7] , GNAI2, HECTD2, HIPK1, INSIG1, MYLIP, MYO10, NLK ^[8] , PAIP2, POGZ, PPP6C, RAB1A ^[9] , TCF12, TIMP3 ^[10] , TRPS1 ^[11] , UBE2J1, VAPB, VGLL4, YWHAG,
hsa-miR-29c	 ABCB6, AKT3, AMOT, AP1G1, ARRDC3, ATP5G1, BLMH, BMF, C5orf15, CAV2, CCND2^[12], CCNT2, CDC42^[13], CHIC2, CHSY1, COL15A1, COL19A1, COL3A1^[14, 15], COL4A1^[16], COL4A2, COL4A5^[17], COL5A2, COL5A3, COL6A3, COL7A1, COMMD2, CPEB3, DICER1, DNMT3A^[14], DNMT3B^[18], EIF4E2, ELF2, ELOVL4, FBN1^[15], FEM1B, FOXJ2, GNG12, GPX7, HBP1, HDAC4^[19], HMGCR, HMGCS1, IFI30, INSIG1, IREB2, ITGB1^[20], KCTD5, KLF4, KLHDC3, LAMC1, LDOC1L, MCL1^[21], MFAP3, MORF4L1, MYCN, NAV1, NAV3^[22], NFIA, NKTR, PARG, PCDHA9, PDHX, PLXNA1, PMP22, PPIC^[23], PPM1D, PPP1R13B, PPP1R15B, PRKRA, PTEN^[24], RAB30, REV3L^[25], RLF, RNF138, RNF39, SESTD1, SFPQ, SLC16A1, SLC31A1, SOX12, SPRY1, SS18L1, SUV420H1, SUV420H2, TAF5, TDG, TNFRSF1A, TP53INP1, USP37, WDFY1, ZBTB5, ZDHHC5, ZFP36L1, ZFP91, ZNF282, ZNF346,

miRNA	Hub target gene
hsa-miR-221	ESR1, FOS
hsa-miR-29c	COL15A1, COL4A1, COL4A2, COL4A5, COL5A3, COL7A1, DNMT3A, DNMT3B, ELOVL4, HDAC4, LAMC1, MYCN, NAV3, PCDHA9, PLXNA1, SOX12,

 Table S5 Hub target genes of hsa-miR-221 and hsa-miR-29c

Reference

1. Wu Q, Ren X, Zhang Y, Fu X, Li Y, Peng Y, et al. MiR-221-3p targets ARF4 and inhibits the proliferation and migration of epithelial ovarian cancer cells. Biochemical and biophysical research communications. 2017.

2. Yang Y, Zhao X, Li HX. MiR-221 and miR-222 simultaneously target ARID1A and enhance proliferation and invasion of cervical cancer cells. European review for medical and pharmacological sciences. 2016; 20: 1509-15.

3. Yuan Q, Loya K, Rani B, Mobus S, Balakrishnan A, Lamle J, et al. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology. 2013; 57: 299-310.

4. Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008; 27: 5651-61.

5. Lupini L, Bassi C, Ferracin M, Bartonicek N, D'Abundo L, Zagatti B, et al. miR-221 affects multiple cancer pathways by modulating the level of hundreds messenger RNAs. Frontiers in genetics. 2013; 4: 64.

6. Cochrane DR, Cittelly DM, Howe EN, Spoelstra NS, McKinsey EL, LaPara K, et al. MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Hormones & cancer. 2010; 1: 306-19.

7. Errico MC, Felicetti F, Bottero L, Mattia G, Boe A, Felli N, et al. The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway. Int J Cancer. 2013; 133: 879-92.

8. He XY, Tan ZL, Mou Q, Liu FJ, Liu S, Yu CW, et al. microRNA-221 Enhances MYCN via Targeting Nemo-like Kinase and Functions as an Oncogene Related to Poor Prognosis in Neuroblastoma. Clin Cancer Res. 2017; 23: 2905-18.

9. Sun T, Wang X, He HH, Sweeney CJ, Liu SX, Brown M, et al. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene. 2014; 33: 2790-800.

10. Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer cell. 2009; 16: 498-509.

11. Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O'Brien C, et al. miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Science signaling. 2011; 4: pt5.

12. Gong J, Li J, Wang Y, Liu C, Jia H, Jiang C, et al. Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer. Carcinogenesis. 2014; 35: 497-506.

13. Park SY, Lee JH, Ha M, Nam JW, Kim VN. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nature structural & molecular biology. 2009; 16: 23-9.

14. Chuang TD, Khorram O. Mechanisms underlying aberrant expression of miR-29c in uterine leiomyoma. Fertility and sterility. 2016; 105: 236-45.e1.

15. Liu L, Ning B, Cui J, Zhang T, Chen Y. miR-29c is implicated in the cardioprotective activity of Panax notoginseng saponins against isoproterenol-induced myocardial fibrogenesis. Journal of ethnopharmacology. 2017; 198: 1-4.

16. Licholai S, Szczeklik W, Sanak M. miR-29c-3p is an Effective Biomarker of Abdominal Aortic Aneurysm in Patients Undergoing Elective Surgery. MicroRNA (Shariqah, United Arab Emirates). 2016; 5: 124-31.

17. Chuang TD, Pearce WJ, Khorram O. miR-29c induction contributes to downregulation of vascular extracellular matrix proteins by glucocorticoids. American journal of physiology Cell physiology. 2015; 309: C117-25.

18. Sandhu R, Rivenbark AG, Coleman WB. Loss of post-transcriptional regulation of DNMT3b by microRNAs: a possible molecular mechanism for the hypermethylation defect observed in a subset of breast cancer cell lines. International journal of oncology. 2012; 41: 721-32.

19. Khalil W, Xia H, Bodempudi V, Kahm J, Hergert P, Smith K, et al. Pathologic Regulation of Collagen I by an Aberrant Protein Phosphatase 2A/Histone Deacetylase C4/MicroRNA-29 Signal Axis in Idiopathic Pulmonary Fibrosis Fibroblasts. American journal of respiratory cell and molecular biology. 2015; 53: 391-9.

20. Han TS, Hur K, Xu G, Choi B, Okugawa Y, Toiyama Y, et al. MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut. 2015; 64: 203-14.

21. Saito Y, Suzuki H, Imaeda H, Matsuzaki J, Hirata K, Tsugawa H, et al. The tumor suppressor microRNA-29c is downregulated and restored by celecoxib in human gastric cancer cells. Int J Cancer. 2013; 132: 1751-60.

22. Zong Y, Yu P, Cheng H, Wang H, Wang X, Liang C, et al. miR-29c regulates NAV3 protein expression in a transgenic mouse model of Alzheimer's disease. Brain research. 2015; 1624: 95-102.

23. Matsuo M, Nakada C, Tsukamoto Y, Noguchi T, Uchida T, Hijiya N, et al. MiR-29c is downregulated in gastric carcinomas and regulates cell proliferation by targeting RCC2. Molecular cancer. 2013; 12: 15.

24. Zou H, Ding Y, Shi W, Xu X, Gong A, Zhang Z, et al. MicroRNA-29c/PTEN pathway is involved in mice brain development and modulates neurite outgrowth in PC12 cells. Cellular and molecular neurobiology. 2015; 35: 313-22.

25. Luo H, Chen Z, Wang S, Zhang R, Qiu W, Zhao L, et al. c-Myc-miR-29c-REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma. Brain : a journal of neurology. 2015; 138: 3654-72.