Supplementary materials

Supplementary Table S1. Search strategy.

Supplementary Table S2. Characteristics of the included studies.

Supplementary Table S3. Methodological quality of case-control studies included in the metaanalysis.

Supplementary Table S4. Methodological quality of cohort studies included in the metaanalysis.

Supplementary Table S5. Methodological quality of RCTs included in the meta-analysis.

Supplementary Table S6. Dose-response analysis.

Supplementary Table S7. Subgroup analyses of anti-inflammatory drug intake and gastric cancer risk.

Supplementary Table S8. Meta-regression analysis.

Supplementary Figure S1. Association between years of aspirin ingestion and risk of gastric cancer obtained by the linear regression model.

Supplementary Figure S2. Begg's funnel plot with pseudo 95% confidence limits.

Supplementary Figure S3. Forest plot of subgroup analyses of anti-inflammatory drug intake and gastric cancer risk for aspirin group.

Supplementary Figure S4. Forest plot of subgroup analyses of anti-inflammatory drug intake and gastric cancer risk for celecoxib group.

Supplementary Figure S5. Forest plot of subgroup analyses of anti-inflammatory drug intake and gastric cancer risk for COX-2 inhibitors group.

Supplementary Figure S6. Forest plot of subgroup analyses of anti-inflammatory drug intake and gastric cancer risk for other NSAIDs group.

Supplementary Figure S7. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the frequency of occasionally use group.

Supplementary Figure S8. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the frequency of 1 to 15 times per month use group.

Supplementary Figure S9. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the frequency of 16 to 29 times per month use group.

Supplementary Figure S10. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the frequency of >30 times per month use group.

Supplementary Figure S11. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the duration of ≤ 1 years use group.

Supplementary Figure S12. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the duration of 2 to 5 years use group.

Supplementary Figure S13. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the duration of 6 to 9 years use group.

Supplementary Figure S14. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the duration of >10 years use group.

Supplementary Figure S15. Forest plot of subgroup analyses of COX-2 inhibitors intake and gastric cancer risk for the frequency of daily use group.

Supplementary Figure S16. Forest plot of subgroup analyses of COX-2 inhibitors intake and gastric cancer risk for the duration of ≤ 1 year use group.

Supplementary Figure S17. Forest plot of subgroup analyses of COX-2 inhibitors intake and gastric cancer risk for the duration of 2 to 5 year use group.

Supplementary Figure S18. Forest plot of subgroup analyses of other NSAIDs intake and gastric cancer risk for the frequency of 1 to 15 times per month use group.

Supplementary Figure S19. Forest plot of subgroup analyses of other NSAIDs intake and gastric cancer risk for the frequency of 16 to 29 times per month use group.

Supplementary Figure S20. Forest plot of subgroup analyses of other NSAIDs intake and gastric cancer risk for the frequency of >30 times per month use group.

Supplementary Table S1. Search strategy.

1. Aspirin
2. Cyclooxygenase inhibitors
3. NSAIDs
4. Non-NSAIDs
5. Anti-inflammatory
6. Celecoxib
7. COX
8. 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7
9. Gastric
10. Stomach
11.9 OR10
12.Cancer
13.Neoplasm
14.Carcinoma
15.Adenocarcinoma
16.Turmor
17.12 OR 13 OR 14 OR 15 OR 16
18.8 AND 11 AND 17

Author/Year	Study period	Age(years)/	No. of	Exposure	Drug(s)
		sex	case/control	assessmen	
			(E/N)	t	
Gillies(<u>10</u>)/1968	1967	(M/F)	25/25	Interview	Aspirin Therapy for
lsomaki(<u>33</u>)/1978	1967–1973	(M/F)	46 101/46101	Database	arthritis Therapy
Gridley(<u>34</u>)/1993	1965–1984	(M/F)	11683/11683	Database	for arthritis
Thun(<u>35</u>)/1993	1982–1988	(M/F)	635031/445058	Interview	Aspirin
Schreinemachers(<u>3</u>		~ /		111001 (10)	riopiini
<u>6</u>)/1994	1971–1987	25-74 (M/F)	7438/5230	Interview	Aspirin Therapy
Cibere(<u>37</u>)/1997	1966–1995	(M/F)	862/862	Database	for arthritis
TPT <u>(38)</u> /1998	1984-1989	45-69 (M)	2545/2549	Interview	Aspirin Aspirin
Farrow(<u>14</u>)/1998	1993–1995	30-79 (M/F)	612/687	Interview	and non aspirin NSAID Aspirin
Amjad(<u>39</u>)/1998	1993-1996	37-69 (M/F)	4/36	Database	and non aspirin NSAID Aspirin, and non
Zaridze(<u>40</u>)/1999	1996–1997	(M/F)	165/893	Interview	aspirin NSAID
Suleiman(<u>41</u>)/2000	1990–1992	(M/F)	82/30	Database	NSAID
Langman(<u>42</u>)/2000	1993–1995	(M/F)	496/1522	Database	NSAID
Coogan(<u>43</u>)/2000	1997–1998	<70 (M/F)	3621/2462	Interview	NSAID
Akre(<u>11</u>)/2001	1989–1995	40-79 (M/F)	409/918	Interview	Aspirin Non-
Fischbach(<u>44</u>)/2001	1993-1994	18-65 (M/F)	137/147	Interview	aspirin NSAID Non-
Sorensen(<u>45</u>)/2003	1989–1997	(M/F)	172057/172057	Database	aspirin NSAID
S Friis(<u>46</u>)/2003	1989-1995	(M/F)	9430/20040	Database	Aspirin
Nomura(<u>47</u>)/2003	1993–1999	18-65 (M/F)	192/553	Interview	NSAID
Ratnasinghe(<u>15</u>)/20	1971–1980	25-74 (M/F)	14838/7996	Interview	Aspirin

Supplementary Table S2. Characteristics of the included studies

Gammon(<u>21</u>)/2004	1993–1995	30-79 (M/F)	395/647	Interview	Aspirin, and NSAIDs
Cook NR(<u>48</u>)/2005	1992–2004	>45 (F)	19934/19942	Interview	Aspirin Aspirin, and non-
Lindblad(<u>49</u>)/2005	1994–2001	40-84 (M/F)	8084/14264	Database	aspirin NSAIDs Aspirin, and non-
Martin W(<u>50</u>)/2005	1998-1999	(M/F)	184/432	Database	aspirin NSAIDs Non-
HB Yang(<u>51</u>)/2006		(M/F)	108/142	Database	aspirin NSAIDs Non-
Wai K(<u>52</u>)/2006	2001-2002	18-70 (M/F)	107/106	Interview	aspirin NSAIDs Aspirin, and non-
Fortuny(<u>53</u>)/2007 Flossmann(<u>12</u>)/200	1980–2002	(M/F)	5520/3396	Database	aspirin NSAIDs
7	1978-2001	(M/F)	9112/4552	Interview	Aspirin Aspirin, and non-
Duan L(<u>54</u>)/2008	1992–1997	30-74 (M/F)	618/1456	Interview	aspirin NSAIDs Aspirin, and non-
Sadeghi(<u>56</u>)/2008	2001–2005	18-79 (M/F)	1197/809	Interview	aspirin NSAIDs Aspirin, and non-
Figueroa(<u>57</u>)/2009	1993-1995	30-79 (M/F)	488/574	Interview	aspirin NSAIDs Aspirin, and non-
Cathrine(<u>13</u>)/2009	1993-1995	30-79 (M/F)	138/178	Interview	aspirin NSAIDs Aspirin, and non-
Abnet CC(<u>28</u>)/2009	1995-2003	(M/F)	227198/83917	Interview	aspirin NSAIDs Aspirin,
Epplein		20.70			and non-
M(<u>58</u>)/2009	1993-2004	30-79 (M/F)	86695/82597	Interview	aspirin NSAIDs
Wu(<u>26</u>)/2009	1998-2004	>20 (M/F)	25145/27016	Database	NSAIDs
Manas(<u>59</u>)/2009	2004-2006	23-91 (M/F)	113/189	Interview	NSAIDs
Steevens(<u>60</u>)/2010	1986-2002	55-70	262/3700	Database	NSAIDs
		5			

		(M/F)			NSAIDs (COX-2
Yanaoka(<u>61</u>)/2010	2003-2005	(M/F)	26/21	Interview	inhibitor)
Gonzalez(<u>62</u>)/2010	1988-2007	25-69 (M/F)	225/253	Interview	NSAIDs
Bertuccio(<u>63</u>)/2010	1997-2007	22-80 (M/F)	67/705	Database	NSAIDs
Rothwell(<u>27</u>)/2011	1979-2009	(M/F)	10155/15515	Interview	Aspirin
Lee J(<u>25</u>)/2012	1999-2008	(M/F)	531/1435	Database	Aspirin NSAIDs (COX-2
Wong(<u>29</u>)/2012	2002-2009	35-64 (M/F)	452/467	Interview	inhibitor) NSAIDs (COX-2
Sheu(<u>23</u>)/2012 Yanmin	2010-2011	(M/F)	70/70	Interview	inhibitor)
Wu(<u>22</u>)/2013	2009-2011	29-75 (M/F)	74/950	Database	NSAIDs
Gong(<u>24</u>)/2014	2000-2010	56-71 (M/F)	81/573	Database	Aspirin Aspirin,
Ajdarkosh(22)/201		40.00			and non-
5	2010-2013	40-80 (M/F)	122/566	Database	aspirin NSAIDs
Sungmo		52 72			
Jung(<u>24</u>)/2015	2007-2011	53-73 (M/F)	158/883	Interview	Aspirin

Abbreviations: E: exposure, N: non-exposure, F: female, M: male, BMI: body mass index, NSAIDs: non-steroidal anti-inflammatory drugs, COX-2: cyclo-oxygen-ase-2.

Supplementary Table S3. Methodological quality of case-control studies included in the metaanalysis

	Selection			Compa rability	Exposure			Tot	Go	
Author/Y ear	Ade quat e defi nitio	Represent ativeness of cases	ctio	Defi nitio n of contr ols		Expos ure ascerta inment	Same metho d of ascerta inment	Non - Resp onse rate	al qua lity sco re	od qua lity

	n of									
	case s									
Gillies(10)/1968	☆	☆	_	☆	☆	☆	☆	☆	7	Ye s
Farrow(14)/1998	\$	\$	☆	\$	**	\$	\$	\$, 9	Ye s
Amjad(39)/1998	☆	\$	-	\$	**	**	\$	-	8	Ye s
Zaridze(4 0)/1999	☆	☆	_	☆	☆☆	☆	☆	☆	8	Ye s
Suleiman(41)/2000	☆	\$	\$	☆	☆	☆☆	☆	-	8	Ye s
Langman(42)/2000	\$	\$	☆	\$	**	*	☆	- ☆	9	Ye
Coogan(4 3)/2000	☆	*		☆	**	☆	☆		9 7	s Ye
Akre(11)/ 2001			-					-		s Ye
Nomura(4 7)/2003	*	*	☆ .	☆	**	☆	☆ .	\$	9	s Ye
Gammon(21)/2004	\$	☆	\$	\$	**	*	\$	\$	9	s Ye
Lindblad(49)/2005	☆ ☆	☆ ☆	☆ -	☆ ☆	☆☆ ☆	☆ ☆	☆ ☆	☆ -	9 6	s No
Martin W(50)/20			-							Ye
05 HB	☆	☆	-	☆	☆☆	☆☆	☆	☆	9	s Ye
Yang(51)/ 2006 Fortuny(5	${\simeq}$	☆	-	${\simeq}$	☆☆	☆☆	☆	-	8	s Ye
3)/2007 DuanL(54	☆	☆	☆	☆	☆☆	☆	☆	-	8	s
)/2008	☆	☆	☆	☆	☆☆	☆	☆	☆	9	Ye s
Sadeghi(5	~	~	~	~	~ ~	~	~	~	,	Ye
6)/2008 Figueroa(☆	☆	${}$	☆	**	☆	${}$	☆	9	s
57)/2009 Cathrine(☆	☆	☆	☆	**	☆	☆	-	8	Ye s V
13)/2009`	${\simeq}$	☆	☆	☆	☆☆	${\simeq}$	☆	☆	9	Ye s
Bertuccio(63)/2010 Lee	☆	☆	-	-	☆☆	☆	☆	-	6	No
J(25)/201 2	☆	☆	-	☆	☆	☆	☆	☆	7	Ye s
Yanmin Wu(22)/2 013 Gong(24)/	☆	☆	-	-	**	☆	☆	-	6	No
2014 Ajdarkosh	☆	☆	-	${\simeq}$	**	☆	${\simeq}$	-	7	Ye s
(22)/2015	${\simeq}$	☆	-	☆	☆☆	☆	☆	☆	8	Ye s

Author/ Year		S	election		Co mpa rabi lity		Exposure		T ot	0
RepreSele sentatsentatctio iveneivenen of ss ofss ofthe the non exposexposexp ededosed cohorcohorcoh t	Asc ertai nme nt of exp osur e	outcome of interest was not present at start	ses sm ent of out co me		ent up ent long of enoug out h for eo the		_ al q u al it y sc or e	o d q u a it y		
Isomaki										
(33)/19										Y
78 Gridley	☆	☆	☆	\$	☆	☆	-	☆	7	e
(34)/19 93 Fhun(3	☆	☆	${\mathbf{x}}$	☆	-	☆	${\simeq}$	☆	7	e
5)/1993 Schrein emache	-	☆	☆	*	**	☆	-	☆	7	e
s(36)/1 994 Cibere(☆	\$	☆	☆	☆☆	☆	${\simeq}$	☆	9	e
57)/199 Sorense	-	☆	☆	\$	☆	☆	☆	☆	7	e
(45)/2 003	${\simeq}$	☆	☆	*	☆☆	☆	☆	☆	9	e
Friis(46 /2003 Ratnasi	☆	☆	☆	*	☆☆	☆	☆	☆	9	e
nghe(15 /2004 Abnet	☆	☆	☆	☆	☆☆	☆	☆	☆	9	e
CC(28)/ 2009 Epplein	☆	☆	☆	☆	☆☆	☆	-	☆	8	6
A(58)/2 09 Aanas(☆	☆	☆	\$	☆☆	☆	☆	☆	9	e
59)/200 Wu(26)	-	☆	☆	☆	☆☆	\$	-	☆	7	e
2009 Steeven (60)/20	☆	☆	☆	☆	☆☆	☆	-	☆	8	e
0	☆	☆	☆	☆	☆☆	☆	${\simeq}$	☆	8	e
Gonzale	-	☆	☆	☆	☆☆	☆	☆	☆	8	1

Supplementary Table S4. Methodological quality of cohort studies included in the metaanalysis.

z(62)/2 010										es
Sungmo Jung(24)/2015										\mathbf{v}
Jung(24										1
)/2015	-	☆	☆	☆	☆☆	☆	-	☆	7	es

Supplementary Table S5. Methodological quality of RCTs included in the meta-analysis.

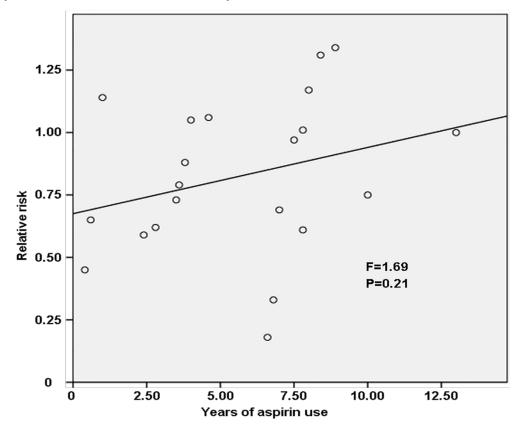
Trial	Generation	Allocat	Blind	Follo	Sampl	Intention-	Methodo
	of the	ion	ing	w-up	e size	to-treat	logical
	allocation	concea			calcul	analysis	quality
	sequence	lment			ation		
TPT(38)/19 98		Adequ	Adeq	Adeq			
	Adequate	ate	uate	uate	Yes	Yes	High
Fischbach(Adequ	Adeq	Adeq			
44)/2001	Adequate	ate	uate	uate	Yes	No	High
Cook NR(48)/200		Adequ	Adeq	Adeq			
5	Adequate	ate	uate	uate	Yes	Yes	High
Wai	1	Unclea	Uncl	Adeq			U
K(52)/2006	Adequate	r	ear	uate	Yes	Yes	Low
Flossmann(-	Adequ	Adeq	Adeq			
12)/2007	Adequate	ate	uate	uate	Yes	Yes	High
Yanaoka(6		Unclea	Uncl	Adeq			
1)/2010	Unclear	r	ear	uate	Yes	Yes	Low
Rothwell(2		Adequ	Adeq	Adeq			
7)/2011	Adequate	ate	uate	uate	Yes	Yes	High
Wong(29)/		Adequ	Adeq	Adeq			
2012	Adequate	ate	uate	uate	Yes	Yes	High
Sheu $(23)/2$		Unclea	Uncl	Adeq			
012	Unclear	r	ear	uate	Yes	Yes	Low

Exposure type		Dose of u	ise	
	Dose (mg/day)	NO. of reports	RR (95%)	Р
Aspirin	<200	5	0.63(0.49,0.81)	< 0.0001
	200-750	2	0.76(0.59,0.98)	0.035
	>750	1	0.94(0.58,1.54)	0.816
COX-2 inhibitors	25	1	0.42(0.14,1.29)	0.130
	200	2	0.50(0.30,0.84)	0.009
	>200	2	0.30(0.09,1.07)	0.064
Other NSAIDs	100	1	0.72(0.53,0.88)	0.037

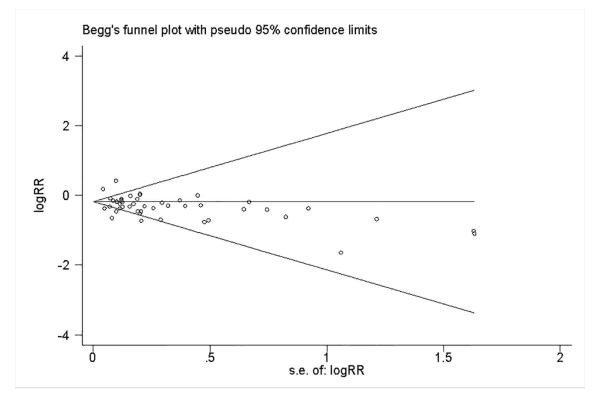
Supplementary Table S6. Dose-response analysis.

Abbreviations: RR, relative risk, RCT: Randomized, Placebo-Controlled Trial, HCC: hospitalbased case-control, PCC: population-based case-control, COX-2: cyclooxygenase-2, NSAIDs: nonsteroidal anti-inflammatory drugs.

Supplementary Table S7. Subgroup analyses of anti-inflammatory drug intake and gastric cancer risk.


			Heterog	eneity test	
Group	NO. of	RR (95%)	χ^2	Р	$I^{2}(\%)$
	reports				
Total	47	0.78(0.71,0.85)	216.43	< 0.0001	78.70
Geographic area					
North America	17	0.71(0.64,0.79)	44.83	< 0.0001	64.30
Europe	17	0.83(0.72,0.96)	49.51	< 0.0001	67.70
Asia	11	0.82(0.61,1.10)	50.76	< 0.0001	80.30

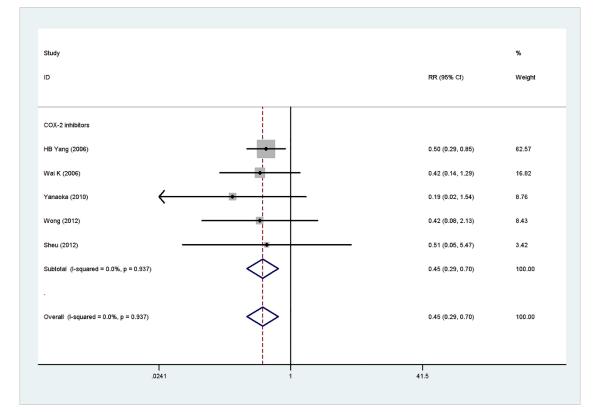
Australia	2	0.87(0.61,1.25)	0.37	0.544	0.00
Site of cancer					
Cardia	13	0.80(0.73,0.87)	21.50	0.044	44.20
Non-cardia	10	0.63(0.54,0.73)	36.25	< 0.0001	75.20
Study quality					
High	41	0.74(0.71,0.77)	65.56	0.007	39.00
Low	6	1.19(0.96,1.47)	11.31	0.046	55.80
Publication year					
≤2000	18	0.67(0.62,0.73)	20.04	0.066	40.10
>2000	29	0.81(0.72,0.90)	165.11	< 0.0001	80.00
Sample size					
≤1000	18	0.76(0.67,0.86)	16.68	0.476	0.00
>1000	29	0.79(0.71,0.89)	197.36	< 0.0001	85.8


Supplementary Table S8. Meta-regression analysis.

Variable	Coefficient	Standard error	P value	95% CI
Study design	1.034	0.07	0.64	0.90 - 1.19
Geographic area	0.94	0.04	0.10	0.87 - 1.01
Study quality	0.61	0.06	< 0.0001	0.51-0.75
Publication year	1.18	0.11	0.09	0.98 - 1.43
Drug type	1.03	0.06	0.60	0.92-1.16
Study size	1.09	0.12	0.45	0.45 - 1.01

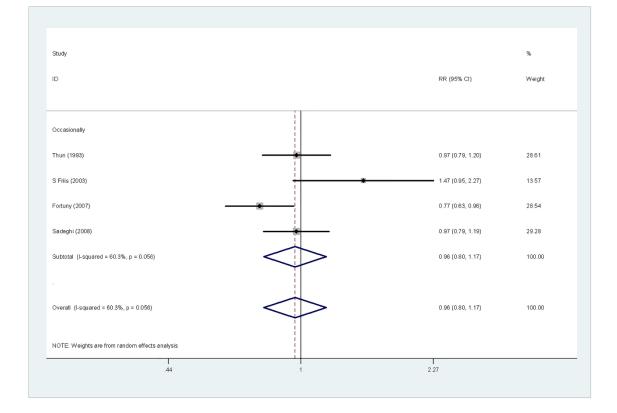
Supplementary Figure S1. Association between years of aspirin ingestion and risk of gastric cancer obtained by the linear regression model. P for linear trend= 0.210. Solid line represents the estimated relative risk (RR) and the point represent the exact RR and years of use for each included study.

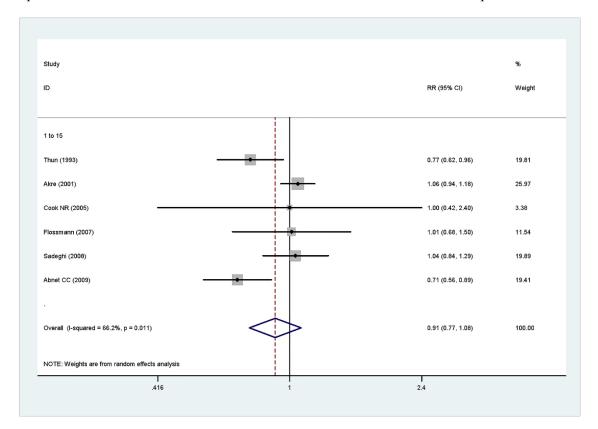
Supplementary Figure S2. Begg's funnel plot with pseudo 95% confidence limits. RR, relative risk. Each dot represents a single study for the indicated association.


Supplementary Figure S3. Forest plot of subgroup analyses of anti-inflammatory drug intake and gastric cancer risk for aspirin group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with aspirin intake.

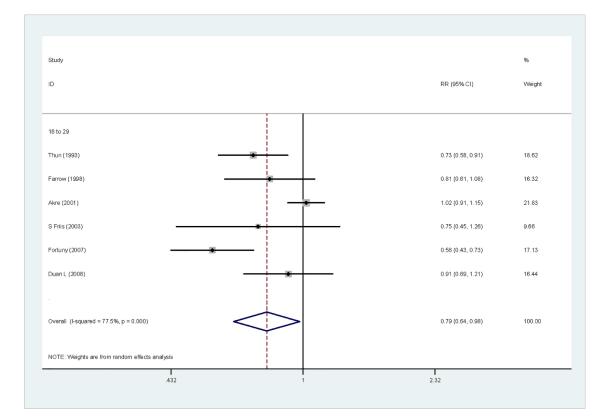
Study ID	RR (95% Cl)	% Weight
Aspirin		
Gillies (1968)	0.54 (0.11, 2.70)	0.28
Thun (1993) 🔶	0.68 (0.55, 0.85)	5.42
Schreinemachers (1994)	0.74 (0.40, 1.39)	1.56
TPT (1998)	0.33 (0.01, 8.19)	0.07
Farrow (1998) 🔶	0.74 (0.64, 0.86)	6.70
Zaridze (1999)	0.87 (0.67, 1.12)	4.86
Akre (2001) -	0.83 (0.68, 1.01)	5.85
S Friis (2003)	0.81 (0.46, 1.44)	1.79
Ratnasinghe (2004)	0.50 (0.28, 0.87)	1.83
Gammon (2004) 🔶 🔶	0.84 (0.68, 1.03)	5.62
Cook NR (2005)	1.00 (0.42, 2.40)	0.87
Lindblad (2005) +	1.21 (1.04, 1.42)	6.65
Martin W (2005)	0.80 (0.28, 2.30)	0.62
Fortuny (2007) +	0.60 (0.51, 0.71)	6.45
Flossmann (2007)	1.01 (0.68, 1.50)	3.09
Duan L (2008) 🔸	0.72 (0.64, 0.82)	7.13
Sadeghi (2008) 🔶	0.97 (0.79, 1.19)	5.79
Figueroa (2009)	0.71 (0.53, 0.95)	4.25
Cathrine (2009)	0.94 (0.66, 1.34)	3.52
Abnet CC (2009)	0.79 (0.63, 0.98)	5.45
Epplein M (2009)	0.85 (0.72, 1.01)	6.46
Bertuccio (2010)	1.05 (0.71, 1.55)	3.10
Rothwell (2011)	0.69 (0.42, 1.13)	2.20
Lee J (2012) +	0.72 (0.63, 0.82)	7.00
Gong (2014)	0.59 (0.40, 0.88)	3.10
Sungmo Jung (2015)	0.66 (0.15, 2.84)	0.34
Subtotal (I-squared = 59.6%, p = 0.000)	0.80 (0.73, 0.87)	100.00
Overall (I-squared = 59.6%, p = 0.000)	0.80 (0.73, 0.87)	100.00
NOTE: Weights are from random effects analysis		
.0136 1	73.5	

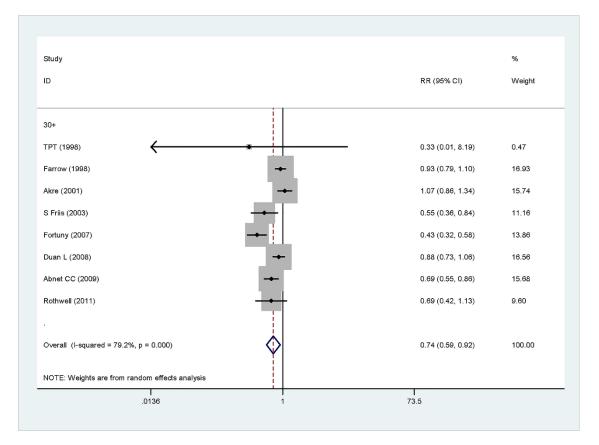
Supplementary Figure S4. Forest plot of subgroup analyses of anti-inflammatory drug intake and gastric cancer risk for celecoxib group. The pooled relative risk was achieved using fix-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with celecoxib intake.

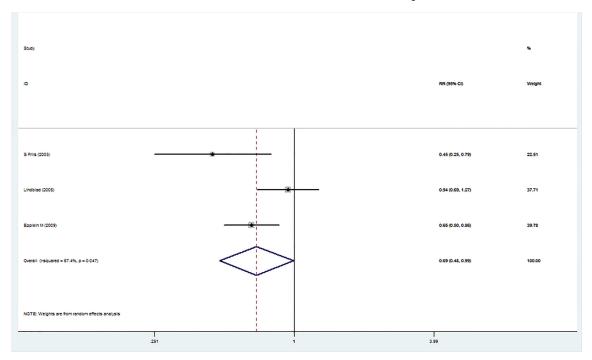

Supplementary Figure S5. Forest plot of subgroup analyses of anti-inflammatory drug intake and gastric cancer risk for COX-2 inhibitors group. The pooled relative risk was achieved using fix-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with COX-2 inhibitors intake.

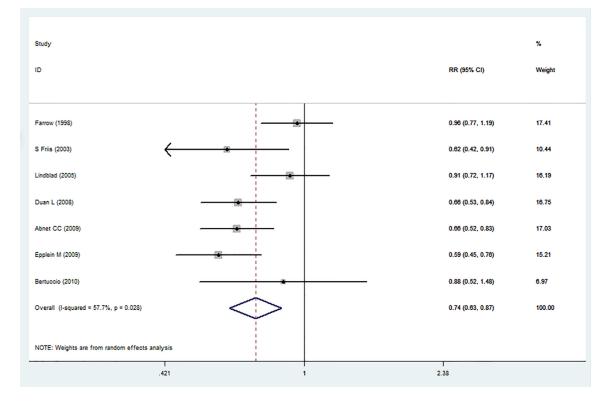

Supplementary Figure S6. Forest plot of subgroup analyses of anti-inflammatory drug intake and gastric cancer risk for other NSAIDs group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with other NSAIDs intake.

Study ID	RR (95% CI)	% Weight
Other NSAIDs		
Isomaki (1978)	0.85 (0.67, 1.07)	5.05
Gridley (1993)	0.63 (0.42, 0.94)	2.94
Cibere (1997)	0.67 (0.19, 2.36)	0.44
Farrow (1998)	0.91 (0.74, 1.13)	5.37
Amjad (1998)	0.68 (0.11, 4.13)	0.22
Zaridze (1999)	0.75 (0.41, 1.39)	1.59
Suleiman (2000)	0.73 (0.47, 1.12)	2.68
Langman (2000)	0.63 (0.43, 0.91)	3.21
Coogan (2000)	0.71 (0.56, 0.91)	4.89
Fischbach (2001)	0.36 (0.01, 8.76)	0.07
Sorensen (2003)	0.90 (0.71, 1.14)	5.00
Nomura (2003) -	0.81 (0.64, 1.04)	4.91
Gammon (2004)	0.81 (0.55, 1.18)	3.16
Lindblad (2005)	0.90 (0.80, 1.01)	6.94
Martin W (2005)	0.54 (0.13, 2.27)	0.35
Fortuny (2007)	0.78 (0.66, 0.92)	6.20
Duan L (2008)	0.72 (0.64, 0.82)	6.75
Sadeghi (2008)	0.83 (0.67, 1.02)	5.47
Figueroa (2009)	0.71 (0.54, 0.93)	4.47
Cathrine (2009)	1.15 (0.74, 1.78)	2.62
Abnet CC (2009)	0.66 (0.54, 0.81)	5.46
Epplein M (2009)	0.85 (0.72, 1.01)	6.15
Wu (2009)	0.72 (0.53, 0.98)	4.00
Manas (2009)	0.49 (0.19, 1.28)	0.73
Steevens (2010)	0.78 (0.56, 1.09)	3.60
Gonzalez (2010)	0.46 (0.18, 1.18)	0.78
Yanmin Wu (2013) 🔶	1.52 (1.25, 1.83)	5.74
Ajdarkosh (2015)	0.92 (0.44, 1.91)	1.19
Subtotal (I-squared = 58.8%, p = 0.000)	0.81 (0.74, 0.89)	100.00
Overall (I-squared = 58.8%, p = 0.000)	0.81 (0.74, 0.89)	100.00
NOTE: Weights are from random effects analysis		
.0148 1	Г 67.6	

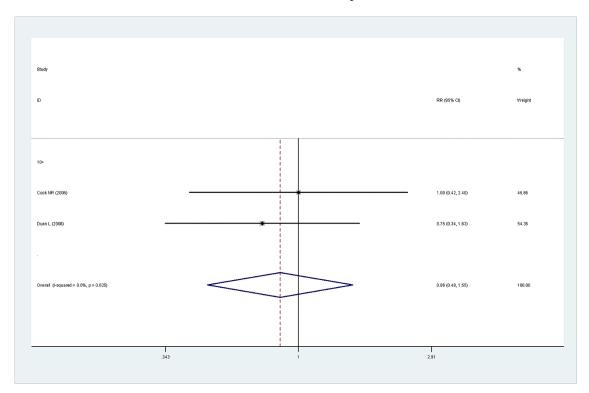

Supplementary Figure S7. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the frequency of occasionally use group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with aspirin intake.

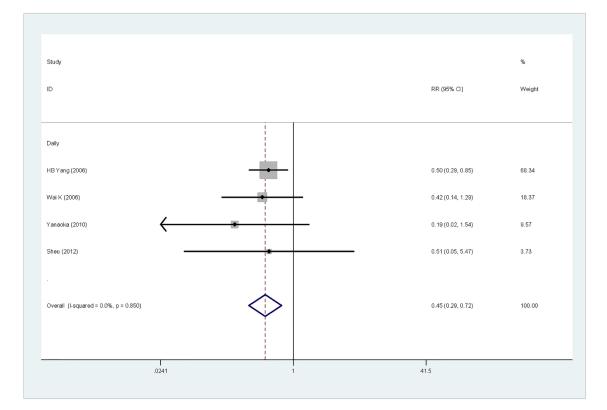

Supplementary Figure S8. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the frequency of 1 to 15 times per month use group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with aspirin intake.


Supplementary Figure S9. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the frequency of 16 to 29 times per month use group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with aspirin intake.

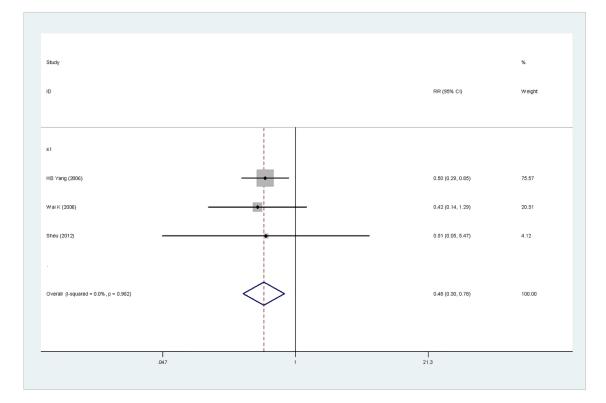

Supplementary Figure S10. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the frequency of >30 times per month use group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with aspirin intake.

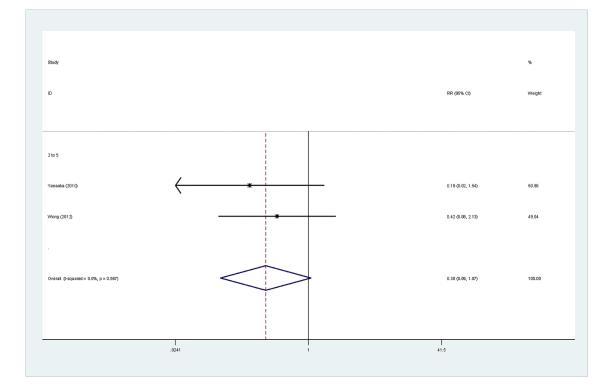
Supplementary Figure S11. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the duration of ≤ 1 years use group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with aspirin intake.

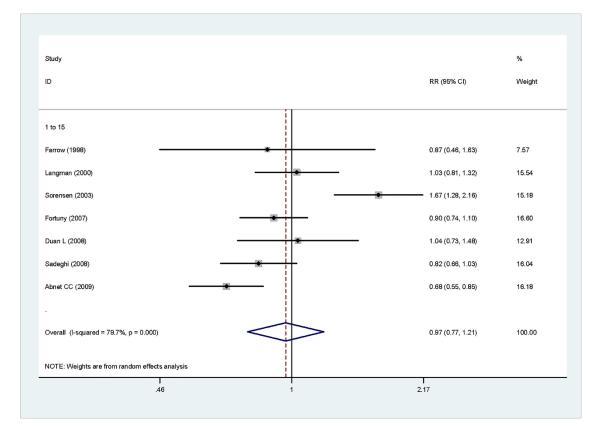

Supplementary Figure S12. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the duration of 2 to 5 years use group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with aspirin intake.

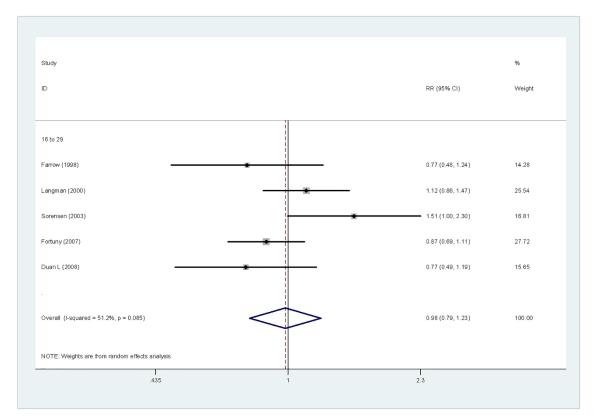

Supplementary Figure S13. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the duration of 6 to 9 years use group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with aspirin intake.

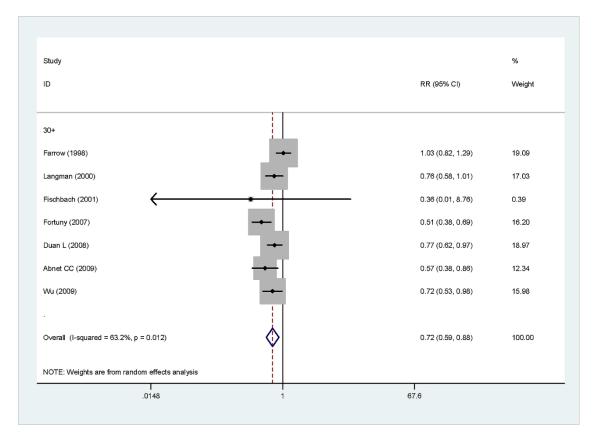
R (95% CI) .33 (0.01, 8.19) .97 (0.75, 1.25) .18 (0.10, 0.33) .31 (0.98, 1.77)	Weight 0.98 14.04 9.96
.97 (0.75, 1.25) .18 (0.10, 0.33)	14.04 9.96
.97 (0.75, 1.25) .18 (0.10, 0.33)	14.04 9.96
.18 (0.10, 0.33)	9.96
.31 (0.98, 1.77)	
	13.61
.01 (0.68, 1.50)	12.56
.61 (0.47, 0.81)	13.87
.34 (0.71, 2.51)	9.78
.69 (0.42, 1.13)	11.26
.17 (0.90, 1.52)	13.95
.81 (0.59, 1.13)	100.00
)).61 (0.47, 0.81) 1.34 (0.71, 2.51) 1.69 (0.42, 1.13) 1.17 (0.90, 1.52) 1.81 (0.59, 1.13)


Supplementary Figure S14. Forest plot of subgroup analyses of aspirin intake and gastric cancer risk for the duration of >10 years use group. The pooled relative risk was achieved using fix-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with aspirin intake.


Supplementary Figure S15. Forest plot of subgroup analyses of COX-2 inhibitors intake and gastric cancer risk for the frequency of daily use group. The pooled relative risk was achieved using fix-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with COX-2 inhibitors intake.


Supplementary Figure S16. Forest plot of subgroup analyses of COX-2 inhibitors intake and gastric cancer risk for the duration of ≤ 1 year use group. The pooled relative risk was achieved using fix-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with COX-2 inhibitors intake.


Supplementary Figure S17. Forest plot of subgroup analyses of COX-2 inhibitors intake and gastric cancer risk for the duration of 2 to 5 year use group. The pooled relative risk was achieved using fix-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with COX-2 inhibitors intake.


Supplementary Figure S18. Forest plot of subgroup analyses of other NSAIDs intake and gastric cancer risk for the frequency of 1 to 15 times per month use group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with other NSAIDs intake.

Supplementary Figure S19. Forest plot of subgroup analyses of other NSAIDs intake and gastric cancer risk for the frequency of 16 to 29 times per month use group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with other NSAIDs intake.

Supplementary Figure S20. Forest plot of subgroup analyses of other NSAIDs intake and gastric cancer risk for the frequency of >30 times per month use group. The pooled relative risk was achieved using random-effects model. Grey square represents relative risk in each study, with square size reflecting the study-specific weight and the 95% CI represented by horizontal bars. Squares or diamonds to the left of the solid vertical line indicate benefit with other NSAIDs intake.

