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Abstract 

The advancement of high throughput omic technologies during the past few years has made it 
possible to perform many complex assays in a much shorter time than the traditional approaches. 
The rapid accumulation and wide availability of omic data generated by these technologies offer 
great opportunities to unravel disease mechanisms, but also presents significant challenges to 
extract knowledge from such massive data and to evaluate the findings. To address these chal-
lenges, a number of pathway and network based approaches have been introduced. This review 
article evaluates these methods and discusses their application in cancer biomarker discovery using 
hepatocellular carcinoma (HCC) as an example. 
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Introduction 
A better understanding of disease associated 

with biomarkers could potentially start a new area for 
uncovering the mechanism of cancer progression, 
development and offer better targets for drug devel-
opment [1]. Studies on single gene/protein/ 
metabolite molecular signatures offer limited insight 
into the complex interplay among the molecules re-
sponsible for progression of complex diseases such as 
cancer. Thus, there is a shift toward the identification 
of a panel of genes that interact directly or indirectly 
in the form of pathway or complex network to evalu-
ate their association to cancer [2,3]. This is accom-
plished through massive data derived by high 
throughput omic technologies such as next generation 
sequencing, microarray, and mass spectrometry. 
Although thousands of candidate biomarkers have 
been discovered by these technologies, few of them 

have been transferred into practical application in 
clinical setting and new drug production. The chal-
lenges lie in (1) high false positive rate of the candi-
date biomarkers identified from omics data; (2) Lack 
of attention on the study of the context of biomarkers 
who are interacting each other in the form of pathway 
or network associated with cancer; (3) Fragmental and 
incomplete information based on biomarkers identi-
fied from solely omics platform; (4) Lack of effective 
algorithms that allow integration of diverse omics 
data sources to simulate the biological pathway and 
networks. To meet these challenges, a number of 
pathway and network based approaches have been 
introduced. This review article evaluates the ad-
vantages and limitations of these methods.  

The traditional approaches that individual and a 
panel of cancer biomarkers are selected by analytic 
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methods such as analysis of variance (ANOVA), Las-
so, pairwise, information theory and support vector 
machine (SVM) do not explicitly consider interaction 
between genes, proteins and metabolites. Compared 
to traditional methods, pathway and network centric 
methods naturally provide a way to understand the 
underlying pathways and the interactions between 
individual signature markers and non-markers. With 
the large-scale generation and integration of genomic, 
transcriptomic, proteomic, and metabolomic data, 
pathway/network-based methods provide a more 
effective and accurate means for cancer biomarker 
discovery. Increasingly, pathway and network-based 
analyses are applied to omics data to gain more in-
sight into the underlying biological function and 
processes, such as cell signaling and metabolic path-
ways as well as gene regulatory networks [4-6]. A 
number of pathway /network approaches have also 
been used for improving the prediction of cancer 
outcome, providing novel hypotheses for pathways 
involved tumor progression [7], and exploring cancer 
associated biomarkers [8]. For example, Taylor et al. 
[9] combined gene expression data with physical 
protein-protein interaction data to identify subnet-
work markers for the prognosis of breast cancer and 
lymphoma patients. Torkamani and Schork [10] used 
gene co-expression network to infer cancer-initiating 
genes in breast, colorectal cancer, and glioblastoma. 
Kim et al. applied the MAPIT (Multi Analyte Pathway 
Inference Tool) algorithm to identify prognostic net-
work markers to predict GBM patient survival time 
using multi-analyte network markers discovered by 
integrating gene expression profile, epigenomic pro-
file, and protein-protein interactome [11]. Goh et al. 
[12] built a human disease network (HDN) by linking 
hereditary disease that share a disease-causing gene 
recorded in Mendelian Inheritance in Man (OMIM) 
database. Although the functional connections in the 
HDN remain to be further demonstrated, it inspires 
us to systematically study the relationships among 
diseases by constructing a network. More detailed 
descriptions of relationships between human disease 
and network essential for understanding of human 
have been recently summarized in reviews [2, 12-14]. 

In this review, we provide some pathway and 
network centric computational approaches and their 
applications for biomarker discovery.  

Summary of pathways and networks 
centric approaches for cancer biomarker 
discovery 

Availability of biomedical pathways and net-
works based on large-scale data gathering through 
diverse omics data sources offers new opportunities 
to explain the causality of relationships between bio-

logical entities and cancers [15]. As shown in Figure 1, 
the general steps of the biomarker discovery include 
the following: 1) Define precisely a well-framed, rel-
evant clinical problem and focus the experimental 
design around appropriate study populations and 
samples; 2) Collect tissue samples or fluids from pa-
tients and suitable assays; 3) Acquire high-throughput 
data from the omics technologies; 4) Analyze the data 
using signal processing, statistical and machine 
learning methods to select relevant features from the 
data; 5) Integrate the pathway/network knowledge 
from databases such as KEGG, HMDB and Reatcome 
mapping candidate biomarkers to the corresponding 
pathways or networks; 6) Evaluate biomarkers to es-
timate their diagnostic or prognostic capability and 
clinical validity using alternative technologies such as 
Westen blot, ELSA, and RT-PCR. In computational 
aspect, cross-validation and independent validation 
are the commonly used methods to evaluate the per-
formance of a biomarkers. P-values, sensitivity, speci-
ficity and the area under receiver operating curves 
(AUC) are used as quantitative indicators of the per-
formance of the methods [16]; 7) Use the biomarkers 
for clinical applications after reliable pre-clinical tests 
and validation of the markers in a large population.  

Statistics methods 
Statistical methods test scientific theories when 

observations, processes or boundary conditions are 
subject to stochasticity. For examples, the classical 
t-test has been extensively used for testing differential 
gene expression in microarray data [35]. However, 
this kind of procedure relies on reasonable estimates 
of reproducibility or within-gene error, requiring a 
large number of replicated arrays. Thus, several 
methods for improving estimates of variability and 
statistical tests of differential expression have been 
proposed. For example, Significance Analysis of Mi-
croarrays (SAM) aimed to improve the unstable error 
estimation in the two-sample t-test by adding a vari-
ance stabilization factor which minimizes the variance 
variability across different intensity ranges [36, 37]. 
ANOVA model approach is widely used in multiple 
kinds of omic data. For example, it was used to model 
microarray data with the effects of array, condition, 
and condition-array interaction and then to fit the 
residuals with the effects of gene, gene-condition in-
teraction, and gene-array interaction [38,39]. Also, it 
was applied to capture the effects of controlled 
groups, batches, condition, alias of experimental 
equipment, and condition-metabolite interaction sep-
arately on LC-MS data [40]. To improve the accuracy 
and sensitivity of analytic results, false discovery rate 
(FDR) [41] and its refinement, q-value, (q-value 
package, www.bioconductor.org) have been rapidly 
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adopted for genomic, proteomics and metabolic data 
analysis including the widely-used SAM, DAVID [42] 
and other approaches [36]. Another statistics method 
for biomarker discovery is linear discriminant analy-
sis (LDA), one of the classical statistical classification 
techniques based on the multivariate normal distri-
bution assumption, is quite robust and powerful to 
discover biomarker or pathways between omics data 
for many different applications despite the distribu-
tional assumption. Compared to LDA, quadratic dis-
criminant analysis (QDA) requires more observations 
to estimate each variance-covariance matrix for each 
class [43]. In addition, logistic regression analysis has 
been successfully used to evaluate biomarker per-
formance of prostate cancer with mRNA profiling 
[44]. Logistic regression (LR) model based on the re-
gression fit on probabilistic odds between comparing 
conditions requires no specific distribution assump-
tion (e.g. Gaussian distribution) but is often found to 
be less sensitive than other approaches[42,43].  

Graph theory based network and visualization 
The modeling fundamentals of graph theory are 

often used to describe the global topology, structure 
or the community of a complex system. It emphasizes 
on entities (e.g, genes, proteins, diseases, biological 
process) and the relations between them. The com-
plexity of graphical modeling can be either simple 
only with nodes and edges or more complex where 

edges have weights, and nodes and edges can be of 
different types. Recent publications have applied 
graphical modeling in computational biology to study 
biological networks, enhance the ability to draw 
causal inferences from functional MRI experiments, 
support the early detection of disconnection and the 
modeling of pathology spread in neurodegenerative 
disease such as Alzheimer's disease [45-49]. For ex-
ample, in mammalian cells, Bleris et al. have had early 
success in characterizing the dynamics of key feed 
forward modules and motifs, helping to enable the 
circuit design of adaptive gene expression [50]. Using 
graph based approaches, Ma'ayan et al. model cellular 
machinery including genes, proteins and other sub-
cellular compartments [51], in which the interactions 
between components are drawn as edge connections 
between the relevant nodes [51]. Gene expression data 
combined with network analysis can yield important 
information on how expression variation relates to 
differences between observed states [52]. As closely 
connected genes tend to be involved in similar func-
tions, network annotation can complement clusters 
obtained via fold change analysis [7]. A standard 
systems-based approach to biomarker and drug target 
discovery consists of placing putative or known bi-
omarkers in the context of a network of biological 
interactions, followed by different ‘guilt-by- 
association’ analyses [53].  

 
 
 
 

Figure 1. The pipeline 
of pathway/networks 
centric approach for 
cancer biomarker 
discovery. A variety of 
computational tools 
and algorithms have 
been proposed for 
biomarker discovery 
based on pathway and 
network methods. 
The most commonly 
used methods are 
categorized roughly 
into statistical [17], 
graph theory [18], 
Bayesian methods 
[19], text mining [20], 
machine learning 
[21-23] and integrative 
methods summarized 
in Table 1. 
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Table 1. Computational methods for biomarker discovery categorized by their application, examplary tools and URLs. 

Approaches Technique & Application Examples Exemplary Tools &URL 
Statistical anal-
ysis 

Hypothesis testing, random sampling. ANOVA. Detection of 
differentially expressed genes/proteins, genotypes, biomarker 
filtering/selection[24]  

BRB:http://linus.nci.nih.gov/BRB-ArrayTools.html  
PAM: http://www-stat.stanford.edu/~tibs/PAM/ 
SAM: http://www-stat.stanford.edu/~tibs/SAM/  

Pattern recog-
nition  

Machine learning, Probabilistic, instance-based, kernel classi-
fication models. Clustering, multi-source data classification, 
biomarker selection and associations [25] 
 Bayesian regression 
models [26], partial least squares [27], and Genetic Algo-
rithm/KNN [28].  

Weka: http://weka.wikispaces.com/ 
LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
PRTools: http://prtools.org/ 
R package: http://cran.r-project.org/web/views/Bayesian.html 

Graph/network 
theory 

Network topology analysis, network visualization and data 
integration, clustering. Genetic, regulatory, protein-protein, 
signaling network analysis, biomarker/target identification 

[29] 

BioNet[4] 
:http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm 
Jung: http://jung.sourceforge.net/ 
http://bioinfo.mc.vanderbilt.edu/dmGWAS.html [30] 

Data visualiza-
tion and imag-
ing 

Sequence and cluster visualization, interactive visualization, 
statistical analysis graphs. Data exploration, biomarker visual-
ization, model explanation, in vivo/in vitro imaging of mole-
cules and cells [29]  

Cytoscape [31]: http://www.biotapestry.org/ 
Medusa: http://coot.embl.de/medusa/ 
Graphviz: http://www.graphviz.org/ 
Osprey:http://biodata.mshri.on.ca/osprey/servlet/Index 
Pajek: http://vlado.fmf.uni-lj.si/pub/networks/pajek/ 
3Omics: http://3omics.cmdm.tw 

Natural lan-
guage pro-
cessing and 
information 
retrieval 

Ontologies, text mining, information representation standards, 
information retrieval and extraction. Inference of functional 
associations from publications, automated annotation and 
characterization [32,33] 

iHOP: http://www.ihop-net.org/UniPub/iHOP 
CoPub: http://services.nbic.nl/copub/portal 
PolySearch: http://wishart.biology.ualberta.ca/polysearch/ 
index.htm 
Open Biomedical Annotator: http://bioportal.bioontology. org/annotator 
GeneSeeker: http://www.cmbi.ru.nl/GeneSeeker/ 

Software de-
velopment, 
Internet tech-
nologies 

Data warehouses and distributed information systems, seman-
tic Web tools, information retrieval, extraction and curation. 
Biomarker discovery and validation platforms, data mining 
tools, search and reasoning engines [34]  

IPA:http://www.ingenuity.com/products/pathways_analysis.htm 
GO: http://www.geneontology.org/GO.tools.shtml  
MiMI: http://mimi.ncibi.org/MimiWeb/main-page.jsp 

 
 
The goal of visualization is to find patterns and 

structures that remain hidden in the raw unstructured 
datasets. Graph visualization is key to display directly 
the various relationships between entities (e.g., genes, 
proteins). Challenges of graph visualization lie in 1) 
the high false positive rate of incorporating hetero-
geneous multi-omic datasets; 2) Visual representation 
of the logical structure transformed from the raw da-
ta; 3) Graph manipulation and layout algorithm for 
representing the complicated relationships between 
biological entities. 4) Heterogeneous omic data from 
different level visualization needs more flexibility for 
layered representation. A number of commercial and 
free sourced graph visualization tools and platforms 
have been extensively developed. For example, Cy-
toscape [31], one of the free open source platforms 
providing biological network analysis and visualiza-
tion with more than 172 registered plugins contrib-
uted by the community, is very versatile in network 
applications, such as network importing, network 
integrating, inference customization, literature min-
ing, topological clustering, functional enrichment, 
network comparison, and programmatic access [54]. 
3DScapeCS, a Cytoscape plugin providing 
three-dimensional, dynamic, parallel network visual-
ization for Mass Spectrometry (MS) molecular net-
work [55]. IPA [56], a commercial software tool for 
pathway analysis with omics data provides powerful 
graphical visualized pathways and networks overlaid 
by diseases, drugs and biological process etc. Path-

wayStudio provide abstractive graphical interface for 
users to analyze gene expression, protein interaction 
and metabolic data to analyze and explore the path-
ways and networks identified from data. STRING not 
only gives the graphical visualized protein interaction 
of both known and predicted but also quantifies each 
pair of proteins by their interaction types such as 
physical interaction and gene fusion etc. [57].  

Bayesian methods and its derivatives. 
Bayesian methods allow informative priors so 

that prior knowledge or results of a previous model 
can be used to inform the current model. In cancer 
bioinformatics and systems biology, the primary ap-
plication of Bayesian methods include Bayesian in-
ference, Bayesian network, Naive Bayes classifier and 
Bayesian variable selection. Among these methods, 
Bayesian network is one of the most common model-
ing tools for pathway and network analysis [19]. 
Bayesian network is a form of directed statistical 
modeling designed to capture conditional dependen-
cies between probabilistic events [58]. It consists of a 
dependency structure and local probability model 
also named probabilistic graph models which include 
Hierarchical Bayesian Networks (HBN), Probabilistic 
Boolean Networks (PBN), Hidden Markov Models 
(HMM), and Markov Logic Networks (MLN) [59-61]. 
The dependency structure specifies how the variables 
are related to each other by drawing directed edges 
between the variables without creating directed cy-
cles. Each variable depends on a possibly set of other 
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variables, termed "parents." Compared with other 
pathway/network centric method, Bayesian network 
model is capable of integrating heterogeneous data, 
missing value and dependent relationships between 
variables [62]. 

In a Bayesian network model, probabilities de-
fine the relationship between the current node and its 
predecessor or parent in a graph [63]. The power of 
these methods lies in their ability to facilitate the re-
verse engineering of multiplex networks based on 
molecular expression, molecular activity and/or cell 
behavior data, serving as a precursor to synthetic 
modifications of existing molecular pathways 
[64]. Bayesian inference is one of the very important 
Bayesian methods widely used in cancer biomarker 
discovery, signaling pathway and network inference 
[65,66]. It has previously been applied to gene ex-
pression data for inference of gene regulatory net-
works [67,68], infer both protein signaling networks 
[69,70] and gene regulatory networks [71]. To incor-
porate an explicit time element, dynamic Bayesian 
Inference was proposed to interrogate dynamic sig-
naling responses within a Bayesian framework, with 
existing signaling biology incorporated through an 
informative prior distribution on networks [66]. In 
addition, Bayesian variable selection aims at solving 
the problems of “large p, small n” existing in omic 
data set and using prior knowledge such as pathway 
and protein interaction to estimate the posterior 
probability by Markov Chain Monte Carlo (MCMC) 
also widely used to infer functional interactions in 
biochemical pathway, model the interactions between 
different functional modules of a biological network 
[72] and pathway based cancer biomarker discovery 
[73,74]. For example, Yang et al. [21] used a Bayesian 
network to construct HCC cell networks and identify 
functional modules and interactions between these 
modules. Stochastic simulation models offer an al-
ternative, but they are hitherto associated with a ma-
jor disadvantage: their likelihood functions cannot be 
calculated explicitly, and thus it is difficult to couple 
them to well-established statistical theory such as 
maximum likelihood and Bayesian statistics. A num-
ber of new methods, among them Approximate 
Bayesian Computing and Pattern-Oriented Modeling, 
bypass this limitation. The difference between Bayes-
ian and frequentist inference lies in the following: 1) 
Bayesian inference provides answers conditional on 
the observed data and not based on the distribution of 
estimators or test statistics over imaginary samples 
not observed (Rossi et al., 2005, p. 4); 2) It includes 
uncertainty in the probability model, yielding more 
realistic predictions. 3) It safeguards against overfit-
ting by integrating over model parameters. But the 
quality of the prior information directly impacts the 

performance of the Bayesian methods. Also, they are 
unable to account for feed- back regulation, a hall-
mark of signaling networks.  

Text mining 
 With the growth of information in literature and 

biomedical databases, biological and clinical scientists 
need efficient means of handling and extracting di-
agnostic methods and prognostic terms and infor-
mation from scientific literature. For this purpose, text 
mining that comprises the discovery and extraction of 
knowledge from free text to generate new hypotheses 
particularly relevant and helpful in biomedical re-
search [14]. Text mining complements the reading of 
scientific literature by individual researchers, allows 
rapid access to information contained in large volume 
of documents and increases the reproducibility of 
literature searches by enabling users to process all 
documents for a specific result. The primary applica-
tion of text-mining in biomedical research roughly lies 
in three aspects: 1) Simple text-mining such as trans-
forming textual information into database content and 
integrating with existing knowledge resources to 
suggest novel hypotheses; 2) Literature analysis in-
cluding clustering and classification of entities or 
diseases; 3) Integrative biology for producing or test-
ing hypotheses against knowledge bases.  

 Currently, text mining is being successfully ap-
plied to the identification of molecular causes of dis-
eases using facts from databases and literature [75-77]. 
For example, text-mining has been used to suggest 
disease biomarkers from the scientific literature, and 
made on the basis of the assumption that two proteins 
are likely to interact with each other if they share a 
substantial amount of contextual information [78,79]. 
By defining a gene of interest, a network is con-
structed from all scientific publications related to the 
query-defined gene. The results can be browsed by 
navigating through the visualized network. CoPub 
makes uses of lexical resources for genes, proteins, 
Gene Ontology labels, diseases, pathways, drugs and 
tissues to identify and statistically to qualify the sig-
nificance of a specific term for a gene or a set of genes 
[80]. The results return a set of annotations for their 
genes of interest. Besides, text mining has been widely 
used in industrial large scale knowledge base for 
query genes, proteins, metabolic compounds and 
drugs functional analysis. To visualize knowledge 
contained in the scientific literature, software tools 
have been developed that provide improved integra-
tion of text-mining results with other data resources. 
For example, IPA (Ingenuity) [56], KEGG [81], Path-
way Studio [82] and HPRD [83] use text-mining to 
integrate gene/protein-phenotype associations link-
ing genes and protein variants to the diseases, toxic 



 Journal of Cancer 2015, Vol. 6 

 
http://www.jcancer.org 

59 

effects and drug response to their knowledge data-
bases. 

Depending on the tasks researchers address, 
text-mining can achieve different objectives. This in-
clude primarily the following: 1) retrieval information 
from relevant documents; 2) Identification of entities 
such as genes, diseases, complex relationship between 
entities and diseases and interactions between pro-
teins and genes [80]; 3) Deposit extracted information 
into database or used to support manual database 
curation efforts [15]; 4) Generation hypothesis [79] 
and test novel research questions [78]. The trend of 
text-mining technique is shifting from the analysis of 
only abstracts to the full text of papers, from the 
analysis of gene and protein-related information to 
the information about cells, tissues and whole organ-
isms. The most prominent shift is to integrate infor-
mation from the literature with data sets from other 
domains such as gene expression profiles [84], ge-
nome-wide association studies (GWASs), biochemis-
try and phenotype [84,85]. Text-mining is prone to 
integration with machine learning, statistical tech-
niques. In the future, text-mining might face several 
major challenges such as improve literature analysis, 
integrate to existing knowledge base, visualization of 
extracted information. 

Machine learning 
Machine learning methods have been used for 

the biomarker discovery from high-throughput omics 
data, inferring causal relations between mutations 
and diseases [21] , interactions between genes and 
proteins [86-88] and relations between environmental 
features and cancer [89] as well as pathway and net-
work modeling. There are two kinds of basic machine 
learning techniques, one is unsupervised machine 
learning such as hierarchical clustering, 
self-organizing mapping (SOM) etc. [90]. The other is 
supervised machine learning which needs known 
knowledge from data train a model and then apply 
this model to predict the output variables [3]. A 
number of machine learning such as SVM [14], Artifi-
cial Neural Network [91], decision tree and random 
forests (RFs) etc. have been widely for various appli-
cations including identification of breast cancer bi-
omarkers [92], diagnosis biomarker of Parkinson dis-
orders [93], subcellular locations of proteins [94,95], 
the prediction of protein functions on the basis of 
protein structures [96,97], the annotation of mutations 
[98,99]. For example, Han proposed a machine learn-
ing based derivative component analysis method to 
select implicit feature by capturing subtle data be-
haviors and removing system noises from a proteomic 
profile to overcome the reproducibility problem for 
biomarker discovery in proteomics [100]. Another 

interesting study by Hoshida et al [101] combined 
eight independent cohorts of gene expression profiles 
to reveal the subclass of HCC and their related path-
ways using unsupervised machine learning methods. 
They found that three common subclasses (S1-S3) of 
hepatocellular carcinoma (HCC) were significantly 
correlated to Wnt pathway, MYC, AKT and hepato-
cyte differentiation respectively. Westen blotting; 
knockout and immunohistochemical staining were 
used for experimental validation of their discovery. 
Another framework called knowledge-driven matrix 
factorization (KMF) proposed by Yang et al. was used 
to reconstruct phenotype-specific modular gene net-
works [21].  

Integrative methods 
Integration of data from multiple omic studies 

not only can help unravel the underlying molecular 
mechanism of carcinogenesis but also identify the 
signature of signaling pathway/networks character-
istic for specific cancer types that can be used for di-
agnosis, prognosis and guidance for targeted therapy. 
The methods described in Sections A-E have proven 
useful for discovering biomarkers from 
high-throughput omic data, analyzing pro-
tein-protein, protein-DNA, and kinase-substrate in-
teractions, as well as for genetic interactions among 
genes [102]. These efforts have yielded good results in 
cancer biomarker discovery, protein interaction and 
interaction between genotype and diseases [103]. 
However, current omic technologies provide only 
limited fragmented reality of the biological functions 
within cell or cancer mechanism. Separate analysis of 
the data generated from each of these technologies is 
limited to revealing only partial aberrant molecular 
changes, because the interaction of multiple molecules 
cannot be modeled by isolated analysis of genes, 
proteins or metabolites. Furthermore, limitations such 
as intrinsic high noise, incomplete data, small sam-
ple-size, bias have motivated the use of integrative 
omic analysis and use of prior biological knowledge 
and information bases, rather than as mere collections 
of single large-scale omic studies [14, 34, 104]. How-
ever, integration of multiple disparate data types re-
mains a significant challenge in systems biology re-
search. Most recently, attempts at integration of mul-
tiple high-throughput omics data have concentrated 
on capturing regulatory associations between genes 
and proteins by comparing expression patterns across 
multiple conditions [105-107], combining functional 
characterization and quantitative evidence extracted 
from different data sources of all levels of gene prod-
ucts, mRNA, proteins and metabolites, as well as their 
interaction [108-110]. Some previous works [81, 
111-113] in integrative analysis utilize pathways in the 
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form of connected routes through a graph-based rep-
resentation of the metabolic network [114]. Other ap-
proaches focus on the functional module of protein 
interaction network and analyze experimental data in 
the context of pathways using multiple source omics 
data [14,115,116]. We and others have developed ad-
vanced bioinformatics tools and algorithms to facili-
tate the integration of diverse data types [34, 110, 
117-120]. 

Different biological types of data, such as se-
quences, protein structures and families, proteomics 
data, ontologies, gene expression and other experi-
mental data sets show a growing complexity pro-
duced by numerous heterogeneous application areas. 
The integration of heterogeneous data is therefore 
becoming more and more important. In order to gain 
insights into the complexity and dynamics of biolog-
ical systems, the information stored in these data re-
positories needs to be linked and combined in effi-
cient ways. 

Application of biomarker discovery in 
HCC 

Hepatocellular carcinoma (HCC) is the fifth most 
common malignancy and the third leading cause of 
cancer death in the world, with the five-year survival 
rate approaching 7% [33]. Treatments of HCC include 
surgical resection and transplantation, ablation and 
transarterial chemoembolization, and systemic chem-
otherapy. Even so, no existing systemic chemotherapy 
is effective for advanced HCC [121,122]. For example, 
Lovet et al. [123] reported that targeted therapy with 
sorafenib which inhibits multiple tyrosine kinase re-
ceptors (RAS/VEGFR) may prolong survival by about 
three months. However, due to the redundancy and 
compensation of the signaling network in HCC, a 
significant reorganization of the signaling network 
observed such as down regulation of tumor suppres-
sors (p53 and CHK1 when XIAP silenced or p-RB 
when CDK6 silenced) and upregulation of tumor 
promoting proteins (ETS1 when XIAP silenced or 
p-CREB when CDK6 silenced) may confer the growth 
benefit for cancer cells [124]. This example suggests 
providing pathways and network information may 
improve the efficacy of systemic chemotherapy of 
HCC. Chang et al [125] partitioned the complex on-
cogenic signaling networks into basic units, or func-
tional modules, of signaling activity (e.g., a protein 
phosphorylating another protein to activate its kinase 
activity) and demonstrated that gene expression sig-
natures based on these modules can predict the effec-
tiveness of pathway-specific therapeutics [125]. Ex-
cept for surgical resection/transplantation of early 
stage HCC, the survival time is not significantly pro-
longed by any of these treatments. Added to pathway 

and network centric method making use of omics data 
with systematic chemotherapy will benefit the de-
velopment of newer therapeutic targets for HCC 
treatment.  

In recent years, computational methods for 
models take more and more important roles in the 
HCC investigations [114,126,127]. Some computer 
systems have also been developed. For example, 
Shannon et al. [128] developed a java based tool Gag-
gle by integrating diverse databases (e.g., KEGG, Bi-
oCyc, String) and software (e.g., Cytoscape, R ) to 
simultaneously explore the experimental data (e.g., 
mRNA and protein abundance, protein-protein and 
protein-DNA interactions), functional associations, 
metabolic pathways (KEGG) and Pubmed abstracts. 
Recently, Zheng et al [129] identified the molecular 
events underlying the development of HCV induced 
HCC by integrating gene expression profile and pro-
tein interaction data. To get the subnetworks, they 
refined the network by removing a network compo-
nent if the number of nodes is smaller than five. They 
found four subnetworks called normal-cirrhosis, cir-
rhosis-dysplasia, dysplasia-early and early-advanced 
HCC networks. From each of the sub networks they 
identified functional modules and hub genes. By 
comparing the pathways in each sub networks, they 
observed changes of pathways and network activities. 
Their findings were validated by literature. Even 
though the types of omics data they used only include 
gene expression and protein interactions, they pro-
vide a way to study the changes of network activities 
by analysis of omic data. Zhang et al. used systemat-
ical method including partial least squares, literature 
mining technique and with GeneGO Meta-Core to 
discover the biomarkers of HCC with gene expression 
as well as protein data. Based on these marker genes, 
they constructed down regulated and up regulated 
networks. In the former, they identified 10 up regu-
lated hub genes (MAPK1, SP1, HDAC1, YY1, ABL1, 
PTK2, SMAD2, NCOA3; CDC25A and NCOA2). They 
identified 7 hub genes (FOS, ESR1, JUNB, EGFR, 
SOCS3; FOLH1 and IGF1) in the latter. Partial least 
squares were employed to construct a classifier with 
these biomarkers. They used five-fold cross-validation 
and two independent datasets to evaluate the per-
formance of the classifier. Furthermore, they used 
experimental immunohistochemistry and western 
blot measurements to verify the marker genes pre-
dicted by the classifier. Their results show that the 
network-based approach facilitates biomarker identi-
fication and improves classification accuracy [130]. 
Hollywod et al [131] identified driver genes which are 
potent diagnosis markers and mechanism study of 
HCC using t-statistic map (TM) and transcriptome 
correlation map (TCM) approaches with integration 
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of DNA copy number measured by genomics CGH 
array and gene expression. They found 50 driver 
genes with significant prognostic relevance to HCC 
key signaling pathways such as mTOR, AMPK, and 
EGFR. siRNA-mediated knockdown experiments was 
used to evaluate the functional significance of the 50 
driver genes [131]. 

Even though collection of diverse omics data to 
analyze the relationships between HCC phenotype 
and biological entities within the cell has been proved 
powerful enough, such integration is still fragmen-
tary, incomplete and inadequate to reflect the whole 
picture of the cancer information and development. 
The amount of omics data from genomics, proteomics, 
metabolomics and interactomics is increasing. In pace 
with the explosion of omics data, a number of 
open-access databases, containing comprehensive 
gene, protein interaction, biological pathway and 
network information, are being developed to provide 
biologists with valuable tools for analyzing the data 
from complex biological systems. These include In-
tAct, BioGRID, MINT, KEGG, PID, STRING and 
REACTOME etc. all of which provide very useful 
qualitative mappings of functional associations be-
tween key components in canonical pathways [14]. 
Table 2 summarizes primary data source and URLs 
specific to HCC.  

 

Table 2. Data sources and URLs for HCC databases. 

Data sources URLs 
EHCO[132] http://ehco.iis.sinica.edu.tw/ 
Onco.HCC[133] http://oncodb.hcc.ibms.sinica.edu.tw/index.htm 
HCVpro[134] http://cbrc.kaust.edu.sa/hcvpro/ 
HCVdb[135] http://euhcvdb.ibcp.fr/euHCVdb/ 
Hepatitis Virus Database 
(HVDB) [136] 

http://s2as02.genes.nig.ac.jp 

Los Alamos National 
Laboratory in the United 
States[137] 

http://hcv.lanl.gov 

LiverAtlas[138] http://liveratlas.hupo.org.cn 
dbHCCvar[139] http://GenetMed.fudan.edu.cn/dbHCCvar 

 
 

Limitations of omics based biomarker 
discovery 

With wide applications of omics technique, more 
accurate and ubiquitous biomarkers have been iden-
tified, but only few have been brought to clinical set-
ting and many have proved to be irreproducible [140]. 
One of the concerns is that biomarkers identified suf-
fer from low diagnostic specificity and sensitivity 
which leads to current cancer biomarkers have not yet 
made a major impact in reducing cancer burden. For 
instance, serum alpha-fetoprotein (AFP) is the most 
widely used biomarkers for detecting and monitoring 

of HCC, but the false negative rate with AFP levels 
may be high as 40% for patients with early stage of 
HCC, for advances patients, the AFP levels remain 
small in 15%-30% of patients [141].  

One of the important limitations is possible arti-
facts in conducing biological experiments such as in-
strument variability. Others include bias in sample 
collection and sample handling which lead to cohort 
differences. For example, Sreekumar et al. [142] re-
ported sarcosine as a prostate cancer biomarker 
through metabolomics analysis. However, subsequent 
validation study done by Jentzmik et al. [143] con-
cluded that the levels of sarcosine measured by 
GC-MS could not differentiate malignant from non-
malignant tissue. Collestelli et al. reported no statis-
tically significant difference between prostate cancer 
and healthy controls in the sarcosine to creatinine 
ratios and that the levels of sarcosine were about 
11.7% higher in the healthy controls [144]. Another 
important limitation relates to lack of computational 
methods that can extract knowledge from omic data 
involving substantial amount of noise, high dimen-
sionality, missing values, etc.  

Although the use of pathway and network-based 
approaches and the integration of prior biological 
knowledge with omic data are promising in address-
ing some of the computational challenges, they too 
have some limitations as outlined below: 
• mRNA levels and DNA alterations may not ac-

curately reflect the corresponding protein levels 
and fail to reveal changes in posttranscriptional 
protein modulation (e.g., phosphorylation, acet-
ylation, methylation, ubiquitination, etc.) or 
protein degradation rates. Correlation of mRNA 
with its associated protein expression can be 
relatively low. The signaling network con-
structed using these approaches does not reflect 
the dynamic signal flow in a spatial relationship. 
Also, the genomic changes (mRNA level, SNP, 
CNV, methylation) ultimately affect protein ex-
pression, activation and inactivation, which, in 
turn, controls cellular behavior.  

• Current proteomic technologies provide only 
limited coverage of the proteome and more sen-
sitive technologies are needed to identify and 
quantitate low abundant proteins [145,146]. 

• Interpretation of pathway mapping results from 
the fact that pathway annotations currently take 
little consideration of tissue specificities of genes 
or proteins in the pathway. This limits the tissue 
and/or isoform specificity in pathway annota-
tions. Thus, specific steps of a pathway may not 
be actually active in tissues/cells from which the 
omics data may be generated. In some cases, this 
may occur because protein isoforms or splice 
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variants have been annotated as a protein class 
or a canonical protein sequence, respectively, in 
the pathway while they may be expressed dif-
ferentially in different tissues/cells. 

• Because biological pathways are inherently 
complex and dynamic, pathway annotations in 
different pathway databases vary significantly in 
pathway models and in a number of other as-
pects, e.g., specific protein forms, dynamic com-
plex formation, subcellular locations, and path-
way cross talks.   
Current computational methods thus need to 

provide a solution to these issues including revealing 
patterns within the data, modeling heterogeneity, 
profiling of disease classes and subclasses, producing 
a predictive of patients’ classification, etc.. Biomarker 
discovery is now changing research away from iden-
tification of individual biomarkers to searching for 
perturbed pathways and network activities.  

Conclusion 
Early detection of cancer improves survival and 

enhances quality of life. An ideal marker would be 
one that can be measured easily and reliably using an 
assay with high sensitivity and specificity and un-
dergo rigorous validation before they are introduced 
into routine clinical care. Currently, the treatment of 
most cancers is based on the tissue types and clinical 
stages. This approach is often ineffective due to the 
heterogeneity of the tumors. Pathway and network 
based method have taken more important role in 
analysis of high-throughput data. Pathway and net-
work based methods provide a global and systemati-
cal way to explore the relationships between bi-
omarkers and their interacting partners. Thus, future 
work is likely to focus on using pathway and network 
based methods for biomarker discovery.  

It is our expectation that methods discussed 
above will become a component in a shared infra-
structure of biomedical resources that can be used by 
researchers to identify and to retrieve the most rele-
vant work, to formulate hypothesis, to find support-
ing and contradicting evidence for hypotheses, to in-
tegrate research results into a framework of whole 
biological systems and to support the translation of 
research results across domains and into clinical ap-
plications. 
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