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Abstract 

Human cancer classification is currently based on the idea of cell of origin, light and electron 
microscopic attributes of the cancer. What is not yet integrated into cancer classification are 
the functional attributes of these cancer cells. Recent innovative techniques in biology have 
provided a wealth of information on the genomic, transcriptomic and proteomic changes in 
cancer cells. The emergence of the concept of cancer stem cells needs to be included in a 
classification model to capture the known attributes of cancer stem cells and their potential 
contribution to treatment response, and metastases. The integrated model of cancer classi-
fication presented here incorporates all morphology, cancer stem cell contributions, genetic, 
and functional attributes of cancer. Integrated cancer classification models could eliminate the 
unclassifiable cancers as used in current classifications. Future cancer treatment may be ad-
vanced by using an integrated model of cancer classification. 
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Introduction 

Human cancers occur worldwide. In 2008, 12.7 
million new cancers and 7.6 million cancers were 
recorded; incidence and mortality rates varied with 
regions and levels of income around the world (1). 
These results require refocusing on all attributes of 
cancer. 

 Differentiating features of malignant and benign 
lesion are well established; these include rapid 
growth, increased cell turn-over, invasive growth, 
metastases, vascular or lymphatic channel invasion 
for malignant lesions. There are many exceptions to 
these attributes of cancer. There are overlaps between 
benign and malignant lesions. Benign 
(non-malignant) tumors do show chromosome aber-
rations; uveal melanomas and blue nevi share muta-
tions in G protein (2). A good example is the recent 
attempt among dermatopathologists to segregate 
some melanocytic lesions as atypical melanocytic 
proliferations with low malignant potential 

(MELTUMP) (3). Sometimes a cancer at given 
site/organ is classified as containing two cell types; 
for example, pancreatic cancer with neuroendocrine 
and acinar/ductal components (4). What model can 
accommodate unclassifiable cancers in a specific loca-
tion? Cancer classification schemes always reserve a 
group as unclassifiable. How can this group be elim-
inated? 

The last two decades have witnessed the surge in 
molecular profiling (5, 6) and has already expanded 
into predictive and diagnostic molecular classification 
of cancers (7, 8). As in the diagnosis of cancers, current 
molecular classification schemes are still dependent 
on morphologic variables. These classifications 
schemes use cell of origin as seen by light and electron 
microscopy. Inherently, all organs can generate mul-
tiple cancer types as multiple cell types exist in these 
organs- “the holy-grail of all subspecialties”. Fur-
thermore, cancer subtypes are generated under the 
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banner of a single, specific cell type of origin concept. 
Take the example of the common Basal cell carcino-
ma- it has variants and subtypes such as nodular, 
superficial, adenoid, morpheaform, infiltrative, kera-
totic, pigmented, basosquamous, clear cell, granular, 
eccrine, apocrine, fibroepitheliomatous, adamantoid, 
and basosebaceous (9). Do these entities have unique 
biological features or simply morphological variants 
of interest only to the diagnostic pathologists? Will the 
“cancer stem cell origin concept” cure this malady? 

The current move to genomics {(gene and tran-
scripts, kinomes, microRNAs, single nucleotide pol-
ymorphisms (SNPs), gene copy number variation 
(CNVs) and proteomics (antibody microarray and 
mass spectrometry)} brings change to the diagnostic 
information needed for treatment. Along with the 
genomic profiling, are efforts at targeted and gene 
therapy. Because of accumulated experience, in di-
agnosis, classifications and treatment of cancer that 
depends on morphology, the shift to genomic meth-
ods should be comprehensive and adequate for 
day-to-day clinical use. While future cancer classifica-
tion schemes or models may not require morpholog-
ical attributes, current dependencies on morphologi-
cal phenotype requires its inclusion (10-12). Morpho-
logic cancer phenotyping does not need to hide the 
compendium of genetic alterations, interactions with 
environment and alterations in transcriptional and 
protein interaction networks that are present in all 
cancers (11, 13). 

Hallmarks of Cancer Cell  

Hanahan and Weinberg (2000) (14, 15) listed the 
seven attributes of cancer; 1) Self sufficiency in growth 
signals, 2) Insensitivity to anti-growth signals, 3) 
Evading apoptosis, 4) Limitless replicative potential, 
telomerase and telomeres 5) Sustained angiogenesis, 
6) Tissue invasion and metastasis, and 7) Genome 
instability. All seven attributes have received great 
attention in the past decade. Growth and anti-growth 
signaling are really complex (13). Protein-protein in-
teraction and signaling networks, growth signaling 
pathways, the role of ubiquitination and protein 
degradation, and dysfunctional protein networks 
(16-18) and interactions are complex, described as 
hubs, modules and motifs (13). Information on cancer 
cell death and provocation by drugs and irradiation 
now requires all cell death types to be considered- 
apoptosis, necrosis, autophagy (19, 20). We now must 
include the pivotal role of microRNAs (21, 22), and 
methylation patterns (23). For example, mi-
croRNA-185 suppress cancer growth by interfering 
with Six1; when absent in cancers leads to increase 
growth and progression (24). Recent efforts have un-

covered the role of transposons in the induction of 
cancer in mouse models; the studies are generating 
previously unknown cancer related genes (25). Class 
II (DNA transposons) and class I retrotransposons 
contribute to DNA instability (26). Cancer cells use 
aerobic glycolysis to meet energy needs (Warburg 
effect) and presumed to be a response to hypoxia and 
tumor micro-environment; changes in metabolic 
needs of cancer cells such as need for glutamine and 
activation of hypoxia-inducible-factor (HIF) are in-
terconnected to oncogene activation (27-29). These 
interacting functionalities of cancer cells impact 
prognostic and predictive models based on one or two 
functional attributes of cancer (30). 

Origin of Cancer Cells –The Cancer Stem 
Cell Model 

The traditional model of cancers envisaged a 
“normal cell” transformed to “atypical or dysplastic“ 
cell with progression into invasive of malignant cell. 
This is the model that only assumes stochastic gener-
ation of cells capable of the behavior of metastasis and 
progression and cellular heterogeneity of cancers. The 
stochastic model is used to explain heterogeneity in 
cancers such as in prostate cancer (Fig 1). The sto-
chastic model will have to assume that all genetic ab-
errations conferring advantages to the cancer cells 
“must be maintained in all subsequent cells as growth 
and proliferation continues and some maturation oc-
curs”. As cancers can also undergo senescence, 
apoptosis, autophagy and necrosis, the stochastic 
model must account for these changes (31, 32). Cancer 
senescence occurs via telomere shortening, oxidative 
stress, and oncogene activation, that can impair cancer 
progression (33-35).The stochastic model has to ac-
count for local recurrence and metastasis after long 
post-treatment intervals. Cell of origin models cannot 
exclude all interactions between cancer cells and any 
influence from the stroma (36, 37). Recent computa-
tional stochastic models, in part based on the hall-
marks of cancer, suggest that onset of cancers depend 
on the first two (2) mutations and early-onset and 
late-onset cancer initiate these mutations at different 
times (38). Cancer initiation via DNA damage re-
sponse and repair, induction of senescence and p53 
mutation (39), the generation of driver mutations can 
be accommodated in stochastic and cancer stem cell 
models. Driver mutations in cancer initiation are 
suggested to accumulate over time. Recent detailed 
studies of human cancers and cancer cell lines show 
extensive and highly localized mutations following 
DNA damage and repair response; 2-3 % of human 
cancers develop these single chromosome mutations 
labeled as chrothripsis and are suggested as the gene-
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sis of driver mutations generated (40). There are no 
unique driver mutations for the stochastic model. 

 

 

 

 

Figure 1. Patterns and heterogeneity in Cancerous Pros-

tate Tissue (Hematoxylin and eosin stain). A. Normal 

prostate showing luminal and basal cells. B. Prostate cancer 

with definable glandular pattern, usually part of Gleason 

pattern 3. C. Prostate cancer with aggregation, clustering or 

individual infiltrating cells as described for Gleason 4. 

 

Cancers of certain presumed cell types, synovial 
cells, occur in locations without defined synovium or 
other related cell type. Clear cell sarcoma is seen in 
deep soft tissues and is a copy of all features of mel-
anoma except for genetic aberrations. How do we 
explain these cancers on the cell of origin concept? 
Prostate cancer cell of origin thought to be luminal 
cells, are now shown to be derived from basal cells 
with the attributes of androgen-independence (41). 

The cancer stem cell model has been used to ex-
plain cancer cell origin, initiation, progression and 
metastasis (42-44) (Fig 2). Cancer stem cells as origin 
of cancers has attributes of hierarchical organization, 
may be under-estimated and assumed to be a minor 
population (45, 46). As in their resident or embryonic 
stem cell counterparts, there are known regulators, 
such as p53 and WNT signaling pathways. Cancer 
stem cells show c-Myc transcription profile, similar to 
embryonic stem cells (47). These cancer stem cells, 
initially described in breast cancers (48), are now de-
scribed in liver, ovarian, prostate, head and neck, co-
lon and brain cancers, melanomas (49-54). The cancer 
stem cells have their specific microenvironments to 
allow for their specific functions; epigenetic modifica-
tions may make cancer stem cells not reliant on its 
specific niche (42). Cancer stem cells are usually pro-
jected as a minor population of all cancer cells (46, 55). 
The number of identified cancer initiating stem cells 
may be affected by the background of animals used in 
xenotranspnatation; in a mouse xenograft model of 
melanoma, 25% of cancer initiating cells could be 
found (50). 

The functional attributes of cancer stem cells 
such as (i) evasion of cell death, i.e apoptosis, (ii) te-
lomere activation, (iii) colony formation, tumor initia-
tion and differentiation are suited to their role in hu-
man cancer (45). The contribution to recurrence, me-
tastasis and treatment, especially radiothera-
py-resistance, is now better appreciated (56, 57). 
Cancer stem cell markers for several human cancers 
are listed in Table 1. Cancer stem cells markers have 
functional attributes such as adhesion, cell invasion 
(CD44) and interactions with GLI1 and focal adhesion 
kinase (FAK) (CD24) (58). 

Table 1. Biomarkers for Human Cancer Stem Cells 

Cancer Type Markers 

Breast CD44+CD24_/low 

Ovary 
 

CD133+/CD44+, CD117, 
Oct4, STELLAR, Nanog and 
ABCG2/BCRP1  

Lung Cd133+(ABCG2, Oct4, ESA) 

Brain CD133+ 

Colon 
 

CD133+ CD44+ EpCam+, CD166+ 
(CD29+, CD24+) 

Pancreas CD44+EpCam+ CD24+ 
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Figure 2 Comparison of Stem Cell and Lineage/Clonal Evolution Models of Cancer Cell Origin. (a)The lineage/clonal 

evolution model is used in morphological classification of cancer. One cell type gives rise to one cancer type. Squamous 

epithelium gives rise to squamous cell carcinoma. Pathologists do encounter squamous cell carcinoma in the urothelium of 

the urinary bladder. How we explain this is by “metaplasia of urothelium to squamous epithelium” and perhaps then to 

squamous cell carcinoma. An easier explanation will be cancer stem cell model as these have the capacity to become any cell 

type. (b) Cancer stem cells, with their inherent functional capacities including reduced cell death, are of interest when 

cancers are treated by irradiation or chemotherapy. Human cancers, examined in detail and extensively, do contain het-

erogeneous cell types; lung cancers are a good example. This leads to difficulties in some classification schemes depending on 

lineage. 
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Cancer Metastases and Cancer Stem Cell 
Model 

Cancer metastasis occurs either through pro-
gressive acquisition of metastatic potential or the 
traits are acquired early during cancer initiation; this 
implies that metastases occurs early or late in cancer 
(59-61). The acquired traits include survival and eva-
sion of cell death, dormancy, migration, immune es-
cape, and ability to seed, home on targets (62). Sup-
port for late evolution of metastasis was described in 
pancreatic cancer using genome sequencing ; this 
study indicated clones with metastatic capacity evolve 
late ( 5years), and are present in the primary tumor 
(63, 64). Breast cancer cells reaching the bone marrow 
share stem cell features and markers CD24 and CD44 
as determined by double immunohistochemistry in 
bone marrow; these stem-like cells ranged from 
33-100% in metastases (65). CD26+CD24+ positive 
cancer cells found in colon cancers, not initiating 
CD133+CD26+CD44 positive cells, define occurrence 
of metastases (66). Some have separated cancer stem 
cells from pancreatic cancers capable of initiating 
metastases (67). 

Personalized Genomic Medicine and Cancer 
Classification 

How will the push for personalized medicine 
affect the present morphology based and the future 
trend of molecular cancer classification? Personalized 
medicine, as envisioned will require individual cancer 
genomics and proteomics for maximum benefit of 
targeted treatment for the individual; the implications 
of genomic cancer medicine should encourage use of 
integrated cancer classification models (68-73).  

Integrated Model of Cancer Classification 

The model envisaged (Fig 3) takes into account 
all elements of a cancer. We now can provide mor-
phologic classes and subtypes, extract proteomic and 
gene profiles and gene copy number variations in-
cluding cytogenetic and array comparative genomics. 
An added feature is that the functions of proteins and 
signaling pathways can be derived from gene expres-
sion and proteomics. This means that altered or dys-
functional pathways can be supported by adding cy-
togenetic or CNV data. There are emerging integrated 
models that use both genomics, exon resequencing, 
and proteomics in cancer analysis (74-76). Recent 
prostate cancer survival and post-surgical recurrence 
used modeling based on some aspects of the inte-
grated classification model including mutation pat-
terns, CNVs, targeted signaling pathway deregula-

tion, miRNA and cDNA profiling; new oncogenes, 
and CNV-based disease risk profiles over above 
morphology grades were found (77). 

 

 

Figure 3 Figure Model of Cancer Classification. In this 

model, the Phenotype is represented by Morphological 

Characteristics/and subtypes; Proteomic profile can be 

derived from high-throughput tissue microarrays and im-

munohistochemistry plus automated computer-assisted 

quantitation with normalized intensities, protein microar-

rays and mass spectrometry; array comparative genomics 

for Copy Number Variation(CNV) and chromosomal ab-

errations, Genomic profiling using cDNA microarrays, and 

finally microRNA profiling. This provides protein profile and 

cDNA profiles for Gene Ontology and functional annota-

tion. Signally pathways active or repressed can be derived. 

The CNV and microRNA data provide information to 

explain active oncogene induced pathways and miRNA 

targeted pathways that impact proliferation, cell survival, 

metastasis etc.  

 
1) Proteomics: Normal and cancer tissues can be 

used for comparative proteomics. The methods 
available are mass spectrometry, protein and anti-
body microarray and tissue microarray. In mass 
spectrometry, tissue and cell protein content is quan-
titatively determined by analyzing peptide content 
and via bioinformatics the protein content, protein 
types and classes, protein interaction networks and 
via gene ontology functional protein mapping (78-80). 
Tissue microarray uses tissue cores for immuno-
histochemistry and indirect analysis of protein levels 
(81-83). In antibody and protein-antigen arrays, pro-
tein or antibody spotted on an array is probed with 
fluorophore-labelled protein or antibody and ana-
lyzed like cDNA microarrays (84-87). Flow cytometry 
can be used to catalogue both surface membrane, cy-
toplasmic and nuclear proteins in cells. Mass spec-
trometry, tissue microarray can be used to validate 
other profiling methods. Mass spectrometry is quan-
titative and can estimate both modified and unmodi-
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fied proteins; 2-dimensional gel electrophoresis and 
protein isolation can be followed by mass spectrome-
try (78, 80, 88, 89). Glycomics and glycan profiling can 
add to the protein profile using both mass spectrom-
etry and lectin microarrays to generate aberrant cell 
migration (90, 91). 

2) cDNA Profiling and Transcriptomics; cDNA 
microarray profiling is the most common 
highthroughput method for determining expression 
levels of mRNA in cells and tissues (5). Isolated 
mRNA is transformed to cDNA, which is used to 
probe optimally designed oligonucleotide array that 
helped to generate new classes of breast cancer, leu-
kemias and lymphomas. Using transcriptomics for 
clinical cancer treatment is an area of intense research 
( translational research) ( 12, 68, 72). Direct RNA se-
quencing overcomes drawbacks of cDNA based 
methods, detect low quantities of mRNA, detect chi-
meric transcripts, can use RNA from fixed tissues, and 
uses sequencing-by-synthesis (92). 

3). Copy Number variatiopn (CNV): Normal and 
cancer cells show variations in genes. The most 
common variation is single nucleotide polymor-
phisms (SNPs). Variations greater than 1kilobase of 
DNA is called CNV. Other variations include mi-
crosattelite instability (MSH), variable tandem re-
peats, transposable elements, deletions, inversions, 
and duplications. Furthermore, transcripts of gene 
fusions provide a wealth of information on the func-
tional input of fused genes(64, 93-97) 

4). Methylation status: Gene promoter methyla-
tion at the cytosine-guanine sites (CpG islands) leads 
to gene transcription suppression. Demethylation 
leads to transcript activation. Methylation status of 
cancer genes adds complexity to interpretation of 
gene profiling. Finding methylation status involves 
use of(i) methylation-sensitive or methylation-specific 
endonucleases, (ii) Sodium bisulphate treatment and 
DNA sequencing (iii) target amplification by capture 
and ligation (23, 98, 99). 

5). miRNA Profiling: microRNAs (18-24 nucleo-
tides) are present in plants and animals. miRNAs play 
significant roles in normal development, cellular re-
sponses and in human cancer. miRNAs represses 
mRNA trascription via partial complimentary align-
ment with targer mRNAs. miRNA profiling adds to 
complexity of cancer cell and tissue profiling. Align-
ment with their targets tells us why certain transcripts 
may be down-regulated (22, 100-105). 

 6). Gene Sequencing: Human genome sequenc-
ing ushered in the grand promise of genomics medi-
cine in 2000. Now individual genes and chromo-
somes, and gene fusions are sequenced; these efforts 
will have impact on the information sets necessary for 

diagnosis, treatment and predicting outcome in can-
cer (38). This enables direct analysis of mutations 
within the gene components of interest. Gene annota-
tion enables linking of sequences to active transcripts 
(96). Next generation sequencing can overcome some 
drawbacks of qPCR and cDNA microarray and can 
enable assessment of cancer gene mutations, copy 
number variations (CNV), SNPs, miRNA and tran-
scription profiling (106). Emerging sequencing 
methods, labeled third generation sequencing, in-
clude single-molecule-real-time sequencing (SMRT), 
direct sequencing using direct imaging and sequenc-
ing using nanopores (107). 

 7). Cancer Grading: Cancer grading to reflect the 
extent of differentiation is done for many cancers. 
Grading systems vary and depend on cancer type. 
Morphologic attributes are used to grade (score) 
prostate cancer (108, 109). Cancer grades will form an 
integral part of the model. Cancer stem cell com-
partment within the tumor can be estimated by pro-
teomics- immunohistochemical methods using anti-
bodies to CD24, CD44, CD133 and CD26.  

The integrated model can be generated using 
comprehensive bioinformatics and data mining tools. 
OmicsAnalyzer is one such tool, which is a plug-in for 
Cytoscape (cytoscape.org), a web based platform for 
protein/gene network modeling, functional annota-
tion and analysis. (110). Bioinformatics tools for clas-
sification, data mining and modeling are available ( 
R-project.org). The integrated model of cancer classi-
fication can help stratify individuals for target treat-
ment and disease outcome based on the treatment 
(Table 2).  

Table 2. Anticipated data sets from a biopsy for decision 

making in targeted cancer treatment. Gene profiling sig-

natures (growth, oncogene and stemness), and proteomics 

can be correlated with CNVs, mutations and gene fusions. 

Protein interaction maps can suggest treatment targets, 

possible pathways of resistance. 

Cancer morphology 
 
 

Adenocarcinoma, Grade 2 

10% Mucinous component 

10% Cancer stem cells 

Proteom-
om-
ics/Transcriptome/
Methylome 
 
 

Up-regulated cell death pathway 

Up-regulated growth factor signaling  

Hyper-methylation of kinases 

Decreased expression of autophagy pathway 

miRNA clusters in some autophagy genes 

De-regulated metabolic genes  

Mutations (Sequenc-
ing/CNV) 
 
 
 
 
 

Mutations in 24 genes 

Gene fusions 

Copy number changes in 10 genes 

Clustered mutations in 8 genes 

BRAF, KRAS, EGFR, and p53 mutations  
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Conclusion 

Cancer cells are endowed with capacities for 
uninhibited proliferation, invasion and metastasis. 
Cancer initiation, driver mutations, progression and 
metastases are common attributes for both stochastic 
and cancer stem cell models; cancer stem cells possess 
attributes that enhance survival in all environments 
hence more suitable as model of cancer. Integrated 
models that capture every essence of a cancer could 
enhance the ability to target different components of 
cancer for maximum therapeutic effect. 
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